Shallowly Embedded, Quantitatively Typed DSL for
Synchronous System Design

PHD FORUM SUBMISSION
Rui Chen

School of Electrical Engineering and Computer Science
KTH Royal Institute of Technology
Stockholm, Sweden
ruich@kth.se

Abstract—Electronic system level (ESL) design requires high-
level language(s) to provide a unified viewpoint of heterogeneous
systems. To achieve this goal, we may employ a family of
embedded domain-specific languages (EDSLs) linked by the same
host language. As the first step of this idea, this extended abstract
presents ongoing research on an EDSL for synchronous system
design, whose terms are constrained by the quantitative type
theory and can be easily mapped to their software/hardware
implementations.

Index Terms—synchronous systems, embedded domain-specific
languages, hardware/software co-design, quantitative type theory

I. INTRODUCTION

An electronic system level (ESL) design process desires
a unified high-level language to formally specify and model
heterogeneous systems, ideally as executable models with
clear correspondence to their implementations [1]. In this
way, a designer’s understanding of systems and their inte-
gration is improved; meanwhile, successive implementation
and verification steps in the design process can be better
integrated. However, designing or introducing such a language
is challenging because each sub-system of a heterogeneous
system may have its behaviour model and desire a unique
paradigm for specification.

Introducing a family of embedded domain-specific lan-
guages (EDSLs) that are embedded in the same general-
purpose programming language (the host language) is promis-
ing to address the challenge of heterogeneous system mod-
elling and specification. Each DSL can have tailored notations
and constructors promoted for a specific kind of sub-system.
By embedding these DSLs into the same host language, the
integration of models of sub-systems is also guaranteed.

As the first step of defining a family of EDSLs for system
design, we present the design and implementation of an EDSL
for synchronous system design in this research. The EDSL is
shallowly embedded in the functional programming language
Idris2 and consequently inherits its quantitative type system

This research was partially funded by the Sweden’s Innovation Agency
(Vinnova) via the NFFP7 project 2019-02743 TRANSFORM - Design trans-
formation for correct-by-construction design methodology, and the Advanced
and innovative digitalization project 2021-02484 EARLY BIRD — Seamless
System Design from Concept Phase to Implementation.

that combines the dependent and linear type systems. With
the shallow embedding, terms of the DSL are represented by
terms of the host language. Hence, DSL terms can be easily
integrated with other models specified in the same language.
Meanwhile, utilising the fine-grained quantitative type system
allows us to specify terms and their compositions in the
DSL precisely so that each term directly corresponds to an
implementation of a synchronous system.

The proposed DSL is implemented with the tagless-final ap-
proach [2] in which interfaces are utilised to specify the DSL’s
syntax and any implementation of these interfaces forms a
semantics of the DSL. Specifically, the DSL is defined by two
sets of interfaces corresponding to stateless (compositional)
and stateful (sequential) behaviour specification. Further, the
DSL is implemented with two semantics so that terms in
the defined DSL can be interpreted as either terms in the
host language (Idris2) or register transfer level (RTL) designs
specified in the Verilog HDL. This implementation allows
us to freely map a DSL term’s sub-terms to their software
or hardware implementations. Hence, hardware/software co-
design can be conducted with the proposed DSL.

As an ongoing research, we summarise the planned contri-
butions of this research as follows:

e we propose a quantitatively typed DSL for synchronous
system specification and modelling;

o we demonstrate a shallow embedding of the proposed
DSL in Idris2 as its implementation, which is ready to
be used for hardware/software co-design; and

o we demonstrate that another EDSL with the same im-
plementation methodology may be transformed into the
proposed EDSL via functions in the host language, which
confirms that a family of EDSLs can be employed to carry
an ESL design process.

Among these contributions, the following has been achieved
at the time when this extended abstract is written:

« the syntax of the proposed DSL defined as interfaces in
Idris2;

o the implementation of the stateless/compositional be-
haviour specification part of the DSL (the compositional
layer) as Idris2 terms and HDL code generator; and



interface Compositional crepr where
lam: {a: _} => {bs: _} => {b: _} -> {auto prfl: Sig a}
—> {auto prf2: All Sig bs} -> {auto prf3: Sig b}
-=> (crepr (HList []) a -> crepr (HList bs) b)
-> crepr (HList $ [al++bs) b
app:... —> crepr (HList $ [a]++bs) b -> crepr (HList as) a
-> crepr (HList $ as++bs) b
prod:... => crepr (HList as) a —-> crepr (HList bs) b
-> crepr (HList $ as++bs) (a, b)
fst:... => crepr (HList $ as) (a, b) —-> crepr (HList as) a
snd:... => crepr (HList $ as) (a, b) -> crepr (HList as) b

(a) The definition of stateless glues for composing terms.

interface Primitive crepr where
const: {len:_} —> BitVec len
—-> crepr (HList []) (BitVec len)
{len:_} => crepr (HList []) (BitVec len)
—> crepr (HList []) (BitVec len)
-> crepr (HList []) (BitVec $ S len)

(b) The primitives/atomic components defined by the target platform.

add:

Listing 1: The definition of the compositional layer.

o the implementation of the stateful/sequential behaviour
specification part of the DSL (the sequential layer) as
Idris2 terms and a partial implementation of the corre-
sponding HDL code generator.

II. COMPOSITIONAL LAYER

The definition of the compositional layer of the proposed
DSL is shown in Listing 1. In this definition, a system to
be specified is of the type crepr (HList as) a, which
specifies that the system has a possibly empty list of inputs of
type HList as and an output of type a. This definition may
be understood as either a component-based design framework
[3] with glues defined in Listing la and components defined
in Listing 1b or a subset of lambda calculus (Listing 1a) with
constants (Listing 1b). By subset, we mean that the abstraction
rule (1am) is restricted by the predicate Sig: Type —> Type
so that only bit-vectors (of the type BitVec) and their product
can be abstracted. With this restriction, there is no way to
define higher-order functions within the DSL. Consequently,
only systems with a finite number of computations may be
specified in and generated from this DSL. On the other hand,
we can still utilise functions in the host language (macros of
the DSL) to generate arbitrarily large systems.

Terms in the compositional layer are interpreted as terms in
Idris2 by specialising the constructor repr: Type —> Type
with the following type:

record EvalC a b where

constructor MkEvalC

evalC: (a => b)
Implementing the interface with the EvalComp type is
straightforward in Idris2 because, in essence, we are im-
plementing pure functional language in a pure functional
language. Its implementation as an HDL code generator relies
on the following type:

record HDLComp a b where
constructor MkHDLC

genHDLC: State Nat (Comp a)

Even though this type consists of a state monad, the state
is employed to generate unique names for HDL constructors
only. The major part of the implementation of the HDL
generator is still context-free, which confirms that terms in the
compositional layer directly correspond to their implementa-
tions.

interface Compositional crepr
=> Sequential (crepr : Type -> Type —-> Type)
(repr: Type —> Type —> Type —-> Type) | repr where
llam:... => (crepr (HList []) a —> repr s (HList bs) b)
-@ repr s (HList $ a::bs) b
appl:... => (1 _: repr s (HList $ a::bs) b)
-> crepr (HList as) a -> repr s (HList $ as++bs) Db
app2:... —> crepr (HList $ a::bs) b -> repr s (HList as) a
-@ repr s (HList $ as++bs) b
app3:... —> repr s2 (HList $ a::bs) b
-@ repr sl (HList as) a —-@ repr (sl, s2)
— as++bs) b

(a) The definition of composition rules of the sequential layer.
interface Register

(HList $

(repr: Type —-> Type -> Type —> Type) where
constructor MkReg
1 get:... => repr a (HList []) a
1 set:... => repr a (HList []) (a, b)
—-@ repr a (HList []) b

(b) The definition of registers.
Listing 2: The definition of the sequential layer.

III. SEQUENTIAL LAYER

The definition of the sequential layer is shown in Listing 2
in which a system with its state of type s, list of inputs of
type HList as and output of type b is represented by the
type repr s (HList as) b. This definition employs the
linearity enabled by the quantitative type theory to specify
that the number of states in a system is an invariant during
its construction, which allows us to specify limited resources
at the specification and modelling stage of a design process.

Terms in the sequential layer are interpreted in Idris2 as
Kleisli arrows of state monads whose state is a resource

modelled by the linearity, i.e. as the following types:

data Sys: Type -> Type -> Type —-> Type where
MkSys: (1 _: a —> LState (!x s) b) -> Sys s a b

By unwrapping the state monad above LState (!* s) bto
(1 _: '% s) —=> LPair (!% s) b,itis clear that terms of
the sys type are all Mealy machines. The sequential layer’s
implementation as an HDL code generator is very close to the
compositional layer’s implementation. The only difference is

that target terms will be of the type

record Seq a where
constructor MkSeq
1 reg: RegAssign
comp: Comp a

in which the usage of registers is restricted.

IV. FUTURE WORKS

As the next step of the research, we plan to finish the
implementation of the sequential layer and demonstrate that a
term that cannot be specified in the DSL, e.g. the application
of a parallel skeleton, may be transformed into this DSL by
methods proposed in [2].

REFERENCES

[1] G. Martin, B. Bailey, and A. Piziali, ESL design and
verification: a prescription for electronic system level
methodology. Elsevier, 2010.

[2] J. Carette, O. Kiselyov, and C.-c. Shan, “Finally tagless,
partially evaluated: Tagless staged interpreters for simpler
typed languages,” Journal of Functional Programming,
vol. 19, no. 5, pp. 509-543, 2009.

[3] J. Sifakis, “System design automation: Challenges and
limitations,” Proceedings of the IEEE, vol. 103, no. 11,
pp- 2093-2103, 2015.



