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I. INTRODUCTION

This thesis advances the field of hardware analysis with
works ranging from performance analysis methods based
on waveforms to formal verification. We provide various
techniques related to design, debug, and verification of
functional and non-functional properties, and present sev-
eral works with both theoretical foundations and practical
applications on real-world examples.

II. WAVEFORM-BASED ANALYSIS

In both, the design phase and the verification phase of a
digital system, waveforms are heavily used. When the design
matures, the verification plan is followed and advanced verifi-
cation techniques, e.g., assertion-based methods together with
coverage-based solutions, are employed [1], [2]. Along this
highly iterative process, waveforms demonstrating expected
behavior or unexpected behavior (e.g., in case of a failed
assertion or a violated timing constraint) have to be analyzed
and understood. For this task, waveform viewers are utilized.
Waveform viewers are software tools which allow viewing
signal values over time. Besides selecting the radix of each
signal and grouping signals together, the user can zoom in
and out, can jump to the next time point where the value of
a signal changes, can determine the time difference between
two cursors, etc. However, while all these features help in
understanding and debugging, waveform viewing is a highly
manual and tedious process.

So far, most research was either concentrated on specific
design understanding approaches, for example to limit the
manual analysis of waveforms to a minimum, or it has been
confined to the generation of “better” waveforms, e.g., by em-
ploying formal methods, reducing their length, or minimizing
the signals involved in a failing trace. While these approaches
have introduced automation in general, there has been almost
no progress for automating the analysis of waveforms.

A. Waveform Analysis Language

In [3]–[5] we presented WAL, our open-source Waveform
Analysis Language that allows writing programs that walk
over waveforms for performing analyses, and introduce the
primary concepts behind the language. This most importantly
includes notions of simulation time, signals, design hierarchy,
and structural similarities as first class citizens of WAL. Even
in this first publication, WAL is powerful enough to perform a
wide range of tasks which were much more difficult to achieve
before, such as complex bus analysis and visualization, as well

Fig. 1. WAL programming principle

1 (load "waveform.vcd")
2 (print data " " INDEX) ;; prints 0 0
3 (step 10)
4 (print data " " INDEX) ;; prints 33 10
5 (print data@-2 " " INDEX) ;; prints 22 10

Listing 1. WAL program from Fig. 1

as reconstruction of the control flow graph of software running
on a RISC-V processor.

The idea behind WAL is shown in Fig. 1. After starting
WAL and loading this waveform, the INDEX points to the
start of the waveform (blue arrow). If we now evaluate the
expression data we get the value 0x00. Evaluating (step 10)
moves the index forward by 10 timestamps (orange arrow).
Note, that the index is not incremented for each rising edge
of the clk signal, but whenever any signal is changed. Now,
evaluating the same data expression results in the value 33.
Finally, we can move the index locally for just one expression
using the expression@offset syntax. Using this syntax, the
expression is evaluated at INDEX + offset and after the
evaluation the index is restored to its previous value. Thus,
evaluating data@-2 at INDEX = 10 results in the value 22
(magenta arrow).

The steps presented above can be automated using the WAL
code shown in Listing 1. First, the waveform is loaded on
Line 1. Then, the value of the data signal is read and printed
together with the current INDEX on Line 2. Next, the index
is moved in Line 3, and the values of data and INDEX are
printed again on Line 4. Finally, the value of data is printed
again on Line 5, but this time the signal is read two timestamps
before the current INDEX.

B. Processor Performance Analysis

The WAL programming language presented in [5] provides
a new way to analyze hardware designs based on waveforms.
However, WAL is only the programming language, and thus
we needed to prove its effectivity on some real-world exam-
ples. In [6], we analyzed a wide range of RISC-V processors
for important performance metrics such as instructions per
cycle and and major pipeline behavior (e.g. stalls). Most
importantly, our analysis is based on a very generic analysis



library which requires only a few lines of code that glue
the library to a specific processor. In [7], we extended this
approach by analyzing a commercial RISC-V processor lever-
aging the introduced analysis library. Additionally, we also
determined the instruction runtime of single instructions for a
wide variety of processor configurations with WAL. Finally,
in [8], we present an extensible and flexible cache analysis
framework.

C. Design Understanding and Debugging

In [9] we presented an online pipeline viewer which makes
understanding complex processor pipelines much easier. By
creating a custom pipeline DSL in WAL, the viewer can be
easily adapted to various processors and architectures. We
also use the viewer successfully in our computer architecture
lecture.

D. HDL Integration

In [10], we collaborated with a team of researchers from
Sweden who are developing Spade, a modern HDL. By
integrating Spade and WAL, we were able to develop a system
which allows bundling analysis code with Spade libraries. The
main idea behind the integration is, that Spade data types can
be annotated with analysis passes, which makes the Spade
compiler emit the required analysis code. Now, users of Spade
libraries can get valuable insights into their design without
having to do any work themselves.

E. Design-Debug Workflow

Simulating larger hardware designs is a lengthy process
that severely increases the time it takes to try and test
changes. In [11], we presented a highly interactive hardware
design-debug-verification workflow based on virtual signals,
a methodology to inject new signals into existing waveforms.
These virtual signals are WAL expressions, which, from the
outside, look and behave exactly like regular signals. Using
virtual signals, it is often possible to get extremely fast feed-
back on bug fixes without having to run the full simulation.

III. ANALYSIS USING FORMAL METHODS

A. SUBLEQ Microcode Verification

SUBLEQ is a Turing-complete type of a one-instruction
set computer that trades performance for implementation size.
In [12], we proposed a virtual prototype of a microcoded
RISC-V processor that uses the SUBLEQ instruction for
the complete microcode. In [13], we presented a framework
for formal microcode verification which we used to verify
the microcode from [12]. Using the VP and the verification
framework, we implemented and verified all instructions from
RISC-V’s RV32I base instruction set.

B. Generating Simulation Stimuli

In [14], we generated simulation stimuli by creating two
distinct but semantically equivalent RISC-V programs. This
is done with the help of a formal processor model, which
is queried to find an equivalent program to another given

program. The resulting two programs activate entirely different
logic, but should produce the same result and end up in exactly
the same state. This property allows using the two programs
to uncover bugs, by running them on the same processor and
looking for mismatches. This constitutes a novel verification
approach for processors.

C. Gatelevel Netlist Optimization

Even with processors optimized for a low gate count,
further optimizations are almost always possible. For example,
in a specific application, a RISC-V processor might never
execute some of the available instructions. In this case, it is
possible to completely remove the gates that implement these
instructions without compromising the correctness of the ap-
plication. In [15], [16], we proposed an open-source gate-level
optimization methodology to reduce netlists based on user-
provided assumptions (in essence external don’t cares), such
as the restricted set of instructions. This approach leverages
formal model checking to prove that some gates can be safely
eliminated given the user-provided assumptions.
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