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I. PROBLEM AND MOTIVATION

Proper encoding of data has always been a challenging task as the
rudimentary step in emerging computing models. Stochastic Comput-
ing (SC) and Hyperdimensional Computing (HDC) have emerged as
two promising computing paradigms for efficient hardware design of
machine learning systems. Both SC and HDC deal with long streams
of ‘0’s and ‘1’s instead of conventional binary values (with positional
encoding or bit-significance) as the basic computational elements. Bit-
streams (BSs) and hypervectors (HVs) (without bit-significance) are
the primitive components acting as atomic data elements in SC and
HDC, respectively. These atomic data elements are generated by using
a proper source of randomness. The state-of-the-art (SOTA) approaches
utilize pseudo-randomn number generators as the source of randomness
to generate the BSs [1], [2] and HVs [3]–[6].

Providing high-quality randomness through employing a proper
random number generator (RNG) is crucial to achieve the desired
throughput and efficient hardware design for both SC and HDC
systems. In contrast to the pseudo-random sequences (e.g. Linear
Feedback Shift Register; LFSR), quasi-random sequences (e.g. Sobol,
Halton) provide homogeneous distribution. These sequences enjoy the
low-discrepancy (LD) property. Discrepancy is defined as the amount
of deviation of the sequence points from the uniformity. A lower
discrepancy of the sequence points results in improved uniformity.
Figs. 1(a)-(d) compare the sparsity and distribution of points in non-
deterministic and deterministic sequences. It can be seen that the
sequence points are equally distributed in deterministic sequences
compared to the non-deterministic ones. Another important factor
signifying proper randomness is the amount of correlation between
each BS or HV pair (Figs. 1(e),(f)). The level of correlation plays a
critical role in SC and HDC operations to produce high quality results.
For instance, SC multiplication requires independent (or uncorrelated)
BSs while SC min demands highly correlated input BSs when im-
plemented using AND gates. Nevertheless, pseudo-random sequences
exhibit suboptimal performance in cascaded circuit architectures where
mid-level correlation among BSs is crucial [7]. Besides that, in HDC,
every distinct data symbol requires orthogonal (uncorrelated) HVs to
be fed to the encoding stage of the model [8].

Adopting pseudo-randomness for encoding data into BSs or HVs
leads to performance degradation of SC and HDC models while it
also affects the overall hardware costs. To obtain the desired level of
accuracy, the model needs to be run iteratively which in turn leads
to increasing the computational overhead, excessive system runtime,
wasting the hardware resources, energy inefficiency, and degraded
performance. To mitigate these challenges, my research suggests some
novel encoding methods based on quasi-randomness to improve the
overall performance of SC and HDC systems.

II. BACKGROUND AND RELATED WORK

In SC, any data value is represented by a sequence of random bits
(‘0’s and ‘1’s) [9], [10]. The probability of having ‘1’s in the BS
represents the data value. For instance, data value x with n-bit precision
is represented by a BS denoted as X , with the probability of having
‘1’s over 2n (Pr(X = 1)/2n). A common method to generate BSs
is to compare the given data value with another value coming from
an RNG source. While the majority of the SOTA works employ
LFSRs (Fig. 1(g)) as the RNG, the authors in [11], [12] proposed
the utilization of Sobol sequences as a deterministic approach for SC
which significantly improves the model accuracy. Unary computing
(UC) [13], [14] is a special class of SC, known for its thermometer
encoding. Any scalar value is represented by a sequence of consecutive
‘1’s equal to the scalar value followed by ‘0’s. UC is free from random
fluctuations in the ‘0’ and ‘1’ bits, an important source of error in SC.

Similarly, in HDC any atomic data unit (HV) is comprising of
‘-1’s (or ‘0’s) and ‘1’s, represented in high dimensionality. In HDC, any
symbolic data including letters, numbers, sensor data, and temporal and
spatial information can be represented by distinct and orthogonal HVs.
This type of structured information encoding is also a Holographic
representation. Orthogonality is provided by randomness to generate
independent HVs. The ideal HV configuration consists of an equal
number of ‘1’s and ‘0’s, with each constituting 50% of the vector [15]–
[17].
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Fig. 1: Determinism vs. Non-Determinism in random sequences. (a),(b) Sparsity plots,
(c),(d) Distribution plots, (e),(f) Correlation/Orthogonality plots, and (g), (h) Design
Implementation.

III. APPROACH AND UNIQUENESS

Considering the inefficiency of employing pseudo-randomness in SC
and HDC, we proposed an efficient, lightweight and highly accurate
deterministic bit-stream generator by utilizing Van der Corput (VDC)
sequences [7], [18]. In general, any VDC-B (in base B) sequence
number can be generated by reversing the digits in the base B according
to the radix point. The resulting value falls within the [0,1] interval.
Our proposal considers Powers-of-2 bases for the VDC sequences
(VDC-2n). The advantage of employing VDC-2nsequences lies in
its simplicity of design, high accuracy, and efficiency. To implement
any VDC-2nsequence, a single n-bit counter (including T flip flops)
is utilized and simple hardwiring scheme is employed to obtain the
target sequence value (Fig. 1(h)). A distinguishing feature of our
proposed design is its capability to produce multiple distinct sequences
simultaneously through various hardwiring schemes. Another signifi-
cant attribute that sets it apart from SOTA methods is that traditional
approaches require multiple executions to achieve the desired accuracy,
whereas our design avoids iterative model execution by leveraging
deterministic sequences. This feature enhances the overall efficiency
and throughput of the system, particularly in scenarios involving
resource-constrained devices. The first use case scenario is in the SC.

Fig. 2(a) demonstrates a SC implementation of a non-linear func-
tion, i.e., sin(x), considering its conventional design (➊) [1] and our
modified design with deterministic RNG source (VDC-2n) (➋) [19],
[20]. We also show the implementation of the basic SC division
operation (➌) [21] and its enhanced design structure (➍) [22], [23]
within the SC domain by applying the proposed deterministic method.
Employing VDC-2nin the design of SC operations [18] and non-linear
functions [24] significantly improve the accuracy while at the same
time mitigating the overall hardware costs.

Similarly, we showed when the HDC models are equipped with the
deterministic sequences, the overall performance improves while the
hardware costs are reduced. Fig. 2(b) exhibits the process of applying
our deterministic method to the encoding stage of HDC. Although the
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Fig. 2: Applying Determinism to the encoding part of SC and HDC models. (a) Implementation of non-linear functions and division operation using the proposed VDC-2nsequence
generator in the SC domain and (b) Improving HDC performance by exploiting deterministic sequences to generate high quality HVs.

TABLE I: Accuracy Evaluation of implementing sin(x) in SC (Fig. 2(a)➊,➋).

Function Design
Approach

Polyn.
order

N ✝
Sequence type Total # of Delay Elements

MSE
(×10-4)

BSG✶

Input
BSG

Coefficients
@

Input
@ 1st

stage
@ 2nd

stage
@ 3rd

stage

sin(x) Proposed ➋ 7
1024
512
256

VDC4
VDC128,256,512
VDC128,256,512

VDC128
2 0 0 0

0.523
0.582
0.576

Baseline ➊ 7 1024 LFSR1 LFSR2 3 1 1 3 2.256
✶: BS Generator ∥ ✝:BS length

TABLE II: Hardware Cost Comparison of implementing sin(x) in SC (Fig. 2(a)➊,➋).

Design
Approach

N
sin(x)

Area
(µm2)

CPL
(ns)

Power
(µW)

Energy
(pJ)

ADP EDP

Proposed ➋ 1024 554 0.44 812.2 365.9 243.7 160.9
Baseline ➊ 1024 801 0.42 2178.2 936.8 336.4 393.4

baseline methods (➎) incorporates both Position and Level HVs for the
encoding parts of the images and binding them together (i.e., element-
wise multiplication), applying deterministic sequences to generate HVs
eliminates the need for Position HVs and further for multiplication
operations (➏) [25], [26]. As an extension of this approach, we
introduced UnaryHD architecture (➐), in which Unary encoding is
applied to HDC models through employing quantized LD sequences for
HV generation [27]. Simplifying hardware implementation, providing
significant cost savings, and contributing to more efficient encoding
of data in HDC systems are among the major benefits of utilizing
UnaryHD. To further improve the performance of HDC systems we
propose an end-to-end Unary structure. This streamlined design is
equipped with a lightweight and single-source dynamic HV generator.
The primary objective of this HV generator design is to achieve
optimal randomness in a single iteration, while being entangled with
the recurrent nature of the random sequence. Distinguishing itself from
baseline HDC (with LFSR), our proposed design does not employ
multiple random sequences to generate m different D-sized vectors.
Instead, we generate only a single D-sized sequence and employ it to
generate different HVs [28]. Another key contribution of this design
is a lightweight logic hardware to represent Level HVs in the HDC
system. For the first time in the literature, Level HVs are represented
not randomly but deterministically by using our unary generator. We
suggest there is no need for randomness in Level HVs. Our proposed
design for generating unary style Level HVs is built with a left shifter
module, an up-counter, and a comparator (➑).

IV. RESULTS AND CONTRIBUTIONS
In order to assess the effectiveness of our proposed deterministic
sequences, especially the VDC-2n, we first applied them to SC designs.
Tables I and II illustrate the evaluation of accuracy and hardware costs
for implementing the sin(x) function. This can highlight the potential
of our approach for designing trigonometric and non-linear functions
in SC, which are fundamental components in artificial intelligence and
computer vision models [19], [24]. As can be seen, the proposed design
significantly improves the accuracy and reduces energy consumption
up to 77% and 92%, respectively.

Employing deterministic sequences for generating high quality HVs
leads to improving the overall performance of the HDC models.
Tables III and IV exhibit the accuracy comparison of employing
deterministic sequences for the image classification tasks in the designs

TABLE III: Accuracy(%) comparison of Design in Fig. 2(b)➏ and Baseline(➎) in HDC.
Method Minimum Average Maximum

D=1K Baseline 70.65 79.09 84.89
Design of ➏ with Sobol+VDC-2n 85.10

D=2K Baseline 71.81 81.29 86.96
Design of ➏ with Sobol+VDC-2n 87.12

D=8K Baseline 86.19 87.27 87.51
Design of ➏ with Sobol+VDC-2n 88.68

SOTA HDCs accuracy (MNIST): ① ➟ [29] 75.40% (w/o retraining) D=2K
∥ ② ➟ [30] 86.00% (w/o retraining) D=10K ∥ ③ ➟ [31] 88.00% (w/ retraining) D=10K ∥
④ ➟ [32], [33] 87.38% (w/ retraining) D=10K.

TABLE IV: Accuracy(%) comparison of Design in Fig. 2(b)➐ and Baseline(➎) in HDC.
Datasets D=1K D=2K D=8K

UnaryHD Baseline UnaryHD Baseline UnaryHD Baseline
CIFAR-10 39.29 38.21 40.28 40.26 41.97 41.71

Blood MNIST 53.05 48.52 55.86 51.20 57.88 51.82
Breast MNIST 68.59 68.47 69.23 69.11 71.15 70.93

Fashion MNIST 68.60 54.19 70.06 69.97 71.37 70.87
SVHN 60.29 60.06 61.73 61.24 62.87 62.82

Proposed 
Method

Baseline
Method

Fig. 3: Performance evaluation of the end-to-end Unary structure for HDC on the
DermaMNIST dataset using single-source HV generator design (Fig. 2(b)➑), D=1024 [28].

of Fig. 2(b) (➏) and (➐), respectively. As it can be seen from the
tables, the HDC model encoded with deterministic HVs surpasses
the baseline model. Fig. 3 showcases the performance of the end-
to-end unary structure for the HDC model of Fig. 2(b) (➑) on the
DermaMNIST dataset [34]. Additionally, we incorporated epoch-based
training options, given the increased complexity of these datasets
compared to conventional handwritten digit classification tasks. The
results showcase promising achievement when deterministic sequences
are used in HDC encoding. The proposed HV generator reduces the
power consumption by 98% and improves the energy efficiency by 15%
compared to the baseline method, which makes it a potential design for
dynamic vector generation suitable for resource-constrained devices.

This research undertakes four key endeavors: ➀ Utilizing determinis-
tic sequences within the SC and HDC systems to generate high-quality
bit-streams for the first time in the literature. ➁ Enhancing the model
throughput, efficiency, and accuracy together with reducing hardware
costs compared to SOTA. ➂ Introducing a novel, streamlined, and
efficient RNG for both SC and HDC designs as a promising solution
for resource-constrained devices. ➃ Integrating UC and HDC for the
first time for lightweight and energy-efficient HDC system design.
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