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I. INTRODUCTION

In the Electronic Design Automation (EDA) context, tem-
poral logics are widely adopted to formalize the designer’s
intents in the form of assertions; then an automatic procedure,
like model checking or dynamic assertion-based verification
(ABYV), is used to prove the assertions are actually satisfied
by the design implementation. As the manual definition of
assertions is an error-prone and time-consuming task, some
tools have been developed in the past decade to automatically
mine assertions from the actual implementation of the Design
Under Verification (DUV) [1], [2], [3], [4], [5]. Following this
approach, the mined assertions are then compared against the
initial (informal) specifications to verify if the expected be-
haviors have been implemented in the DUV. Furthermore, by
analyzing the mined assertions, the verification engineers can
also discover the presence of unexpected behaviors caused by
either design errors or malicious code. These Assertion Mining
(AM) techniques have been mainly used in the digital domain
to generate Linear Time Logic assertions starting from RTL
implementation. However, with the ever-increasing diffusion
of complex and interconnected cyber-physical systems (e.g.,
in smart industry, smart cities, automotive, healthcare, etc.)
that mix physical and digital parts, mining assertions only
on the digital side is no longer sufficient. Therefore, there
is a need to support verification engineers of cyber-physical
designs with new AM techniques that can mine specifications
for hybrid systems, i.e., systems that exhibit both discrete and
continuous behaviours [6]. Moreover, CPSs exhibit a level of
complexity that demands sophisticated modeling techniques
to capture their behavior accurately and ensure their correct-
ness. Such complexity arises from the dynamic nature of
CPSs, where discrete computational elements interact with
continuous physical processes. Furthermore, identifying and
rectifying errors across both digital and physical domains
requires specialized tools and expertise; as a result, debugging
CPS models presents a challenging task.

A few AM methodologies for the hybrid world are present at
the state of the art. They generally adopt the Signal Temporal
Logic (STL) [7] to automatically mine assertions that rep-
resent behaviors formed by merging time-bounded temporal
operators (in a dense-time environment) that predicate over
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Fig. 1. Overview of the mining procedure.

real-valued signals. The already-present methodologies present
limitations regarding the mining templates used or in terms
of computational cost to obtain the assertions. To fill this
gap, I propose an automatic assertions generation tool called
SLAM (Signal temporal Logic Assertion Miner). Then, to
exploit SLAM, a modeling tool called CHAOS has been
created. CHAOS provides a modeling environment based on
the formalism of hybrid systems [8] and offers assertion
mining and verification features to the user. Both these tools
will be explained further in the following sections.

II. SLAM

As mentioned in the introduction, the objective of SLAM is
to infer STL assertions starting from the execution traces of the
DUYV. Moreover, starting from a set of user-defined hints and
the simulation traces of DUYV, it is completely agnostic with
respect to the design from which the traces were generated.
Thus, the DUT source code is not necessary. The user-defined
hints involve STL templates, propositions, and ranking metrics
that are exploited by the assertion miner to reduce the search
space and improve the quality of the generated assertions. This
way, the tool supports the work of the verification engineer
by including his/her insights in the process of automatically
generating assertions. In SLAM the supported templates are
in the form G(antecedent — consequent).

The methodology is divided into the following three steps, an
overview of which is also reported in fig 1:
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Fig. 2. CHAOS architecture

1) Instantiation of consequent: A set of Partially Instanti-
ated Templates (PITs) are generated by instantiating the
placeholders included in the consequent of the templates
belonging to T' with the propositions in P. Thus, each
resulting PIT corresponds to a different permutation of the
propositions that can be instantiated in the placeholders
of the consequent.

2) Instantiation of antecedent: In the second phase, for
each PIT generated in phase 1), the tool tries to automat-
ically infer a corresponding antecedent using a Decision
Tree and clustering algorithm to extract the minimal
antecedent that makes the whole formula valid on the
entire trace.

3) Assertion qualification: In the last phase, the mined
assertions are filtered and ranked. In this way, assertions
that capture irrelevant or trivial behaviours are removed
according to interestingness metrics that can be decided
by the user. The surviving assertions are then ranked
consequently.

SLAM, therefore, stands as a valuable asset in a Verification
engineer’s toolbox. Providing the user with a powerful tool to
improve and speed up the verification process of CPSs.

III. CHAOS

This section details the methodology employed by CHAOS,
a tool designed for modeling, simulation, and assertion-based
verification of hybrid automata. The tool, whose architecture is
shown in fig. 2, is structured into four main modules: Design,
Simulation, STL Assertion Mining, and STL Monitoring.

e The Design Module provides a graphical interface for
constructing hybrid automata models, enabling users
to create complex CPS models without extensive pro-
gramming knowledge. Users interact with a graphical
workspace to define the structure of the hybrid automaton,
specifying control modes (states) and control switches
(transitions) between these modes. Each switch is gov-
erned by jump conditions based on the values of contin-
uous variables. The system is modeled as a collection of
parallel automatons, each managing different aspects of
the CPS. Once the model is complete, it is exported in
JSON format for simulation.

e The Simulation Module facilitates the dynamic analysis
of the modeled system, providing insights into system be-
havior over time and identifying potential design issues.
Users specify the total simulation time and frequency,
which determine the granularity and duration of the
simulation. The module computes the concurrent evolu-
tion of all defined automatons, updating control modes
based on jump conditions and continuous variables using
differential equation solvers. A debugging mode allows
users to manually step through each simulation instance,
observing variable values and active control modes. The
simulation generates execution traces that can be exported
for further analysis.

e The STL Assertion Mining module automatically gen-
erates STL assertions from execution traces, capturing
the behaviors of the CPS model and identifying potential
design issues.

e The STL Monitoring module verifies that generated or
manually specified STL assertions hold true for the exe-
cution traces, facilitating the identification and correction
of design errors. Users provide the execution traces and
the STL assertions to be checked. If an assertion fails,
the tool provides counterexamples, highlighting the time
and variable values at the point of failure. Users can re-
evaluate assertions after making changes to the model to
ensure correctness and identify regressions.

IV. CONCLUSIONS

In this paper, I described an assertion generation tool called
SLAM and a modeling tool called CHAOS. SLAM presents
various advantages w.r.t. the current state-of-the-art approaches
in terms of flexibility and ease of use while CHAOS allows
to model CPSs in a user-friendly way thanks to the usage
of hybrid automatons and a graphical interface while at the
same time providing assertion mining and verification features
to debug the modeled systems. Future works will focus on
refining and extending the SLAM and CHAOS by testing them
on real industrial cases.
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