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Abstract—Probabilistic programming languages (PPLs) enable
users to write a statistical model and leave the inference part to
the compile and runtime systems. Ideally, PPL developers aim
to separate the inference from writing models, enabling users
to focus only on the model where their expertise lies. However,
how a user writes a model affects inference efficiency. Further,
as the expressiveness of a PPL increases, it becomes harder to
implement an efficient inference algorithm. The first part of my
PhD thesis focuses on optimization methods that automatically
utilize model structures to improve inference efficiency. The main
focus of the second part is inference algorithms. The planned con-
tribution includes a comprehensive survey and implementation
of various inference algorithms. Based on that survey, we plan to
develop efficient inference algorithms for phylogenetics problems.

Index Terms—bayesian inference, probabilistic programming,
optimization, belief propagation, delayed sampling

I. INTRODUCTION

The probabilistic programming field has significantly im-
proved model specification and automated Bayesian inference.
However, the trade-off between model expressiveness and
computational efficiency is a significant challenge, constituting
the base of research problems in my PhD thesis.

In Bayesian statistics, we are interested in determining the
posterior distribution of model parameters given observed data.
According to Bayes’ theorem, we can calculate the posterior
given the prior distribution of the model parameters and the
likelihood of the data. PPLs allow users to define the priors
and the likelihoods for models using a high-level programming
interface and leave the posterior calculation to the inference
algorithms. However, there is a trade-off between the expres-
siveness of a PPL and inference efficiency. As models grow
in complexity, the computational cost of inference increases.

The main research problem of my thesis is to develop opti-
mization methods to improve inference efficiency in PPLs with-
out compromising model expressiveness. With this research
problem, we aim to find the balance between two factors
of probabilistic programming: the ability to write complex
models (expressiveness) and the accuracy and execution time
of inference algorithms (efficiency).

II. PREVIOUS WORK

Utilizing structures in a model has been a key component
for optimization methods to improve inference efficiency. The
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analytical relations between random variables in a model may
provide closed-form solutions for the inference, improving the
inference efficiency [1]. Delayed sampling [2] is a runtime op-
timization method utilizing conjugate-prior relations between
random variables of a model. Baudart et al. [3] and Atkinson
et al. [4] propose a modified version of the delayed sampling
algorithm for synchronous languages. Atkinson et al. [5] and
Azizian et al. [6] improve the delayed sampling algorithm to
catch more analytical relations. However, their target language
is not universal PPLs. Delayed sampling is a powerful ap-
proach; however, the cost of keeping these relations at runtime
makes compile-time approaches more appealing.

Lai et al. [7] proposes a delayed sampling approach utilizing
these relations at compile-time. However, their approach is
not separated from the inference algorithm, meaning that
the inference algorithm needs to be adjusted based on their
method. Currently, their approach does not support trans-
forming a model, such as latent Dirichlet allocation [8], that
contains stochastic branches or unbounded loops. There are
other approaches that utilize analytical relations at compile
time; however, they either depend on computer algebra [9],
or target a non-universal simple PPL [10] [11], or depend on
domain-specific languages [12].

In many problem domains, models with tree-structured de-
pendencies among the random variables have been developed
to understand hierarchical and evolutionary relationships in
real-world data [13, 14, 15, 16, 17] and utilizing the topology
of a model, such as random variables forming tree structures,
may improve inference efficiency. In Monte Carlo (MC) infer-
ence methods, calculating the tree’s likelihood is fundamental
to estimating the posterior [18, 19]. Naively applying MC
methods to the tree-structured models can be computationally
expensive since the inference algorithm needs to consider all
possible values that an unobserved node can take to calculate
the likelihood of a tree. Belief propagation [20] is a method
giving exact solutions for such models; however, its integration
into universal PPLs requires addressing various challenges to
preserve expressiveness and runtime performance.

III. RESEARCH PLAN

A. What has been done

The thesis has three main contributions that have been
completed. The first contribution is to develop a compile-



time version of delayed sampling that is orthogonal to the
inference engine in a universal PPL. Our proposed approach
employs the delayed sampling algorithm at compile time and
is implemented in a statically typed universal probabilistic
programming language, Miking CorePPL [21, 22]. The main
idea behind the proposed method is to generate a graph rep-
resentation of the probabilistic program, transform the graph
based on the conjugate prior relations, and reconstruct the
program from the transformed graph. The key point here is
that we cannot directly represent every structure of a model
written in a universal PPL with a Bayesian network (BN)
since the program may contain recursion, loops, and stochastic
branches. Therefore, we create a graph called a programmatic
Bayesian network (PBN) that encapsulates the structures a BN
cannot represent directly. In addition to random variable nodes,
as in BNs, PBNs contain special nodes such as code blocks,
multiplexers, plates, and list nodes to represent a probabilistic
program. While PBNs make our approach more expressive,
transforming a PBN back to a probabilistic program makes
the optimization technique orthogonal to the inference algo-
rithm. We evaluate our contribution on real-world examples,
such as latent Dirichlet allocation [8] and demonstrate our
contribution’s execution time improvement.

The second contribution is to employ runtime delayed
sampling algorithm in a statically-typed universal PPL. The
main idea behind delayed sampling is to delay sampling
random variables or not to sample at all, if possible, using the
conjugate prior relations. However, if we employ this method
in a statically typed system, it introduces a challenge. The type
system expects a value type, such as float or integer, for a ran-
dom variable because of immediate sampling; however, with
delayed sampling, depending on whether the value is delayed
at runtime, the type can be either a delayed type or a value
type. However, the compiler should know the types in a stati-
cally typed system. The original delayed sampling algorithms
have been implemented in Birch [23] and Anglican [24].
Since Birch is a language designed for delayed sampling,
the language constructs account for delayed variables. The
Anglican implementation creates separate distributions and
constructs for delayed variables. Changing the distributions
and constructs to account for delayed variables requires lots
of effort for the existing framework in a statically typed system
not designed for delayed sampling. To tackle this challenge,
we propose a user-annotated system that enables users to mark
the delayed random variables, which helps the type system in
a statically typed PPL. We evaluate our contribution on real-
world examples, such as vector-borne disease model [25].

The third contribution is to automate the forward pass of
belief propagation to improve inference efficiency by utilizing
tree structures in a model while preserving the expressiveness.
The forward pass of belief propagation enables us to calculate
the likelihood of a tree efficiently. However, its integration
into universal PPLs is challenging since the tree structure
may not be fixed because of recursion and branches. We need
to update the likelihood of the program after observing each
subtree. However, not knowing when a subtree is constructed

is a challenge. Further, as in delayed sampling, we also
encounter type issues because belief propagation does not
sample the internal nodes of a tree. We introduce special
constructs and a user-annotation system to help the type
system. Our approach automatically captures tree structures in
a model and applies belief propagation in universal PPLs. We
evaluate our approach through case studies in phylogenetics
and demonstrate our contribution’s inference accuracy using
marginalized likelihood variance as a metric. We included all
these contributions in two papers, which are under submission.

B. The planned work

The previous contributions consist of utilizing model struc-
tures to improve inference efficiency. Although optimization
before running inference may improve inference efficiency
significantly, choosing or designing an appropriate inference
algorithm itself is equally important. For example, in phyloge-
netics, choosing the appropriate proposal for the inference al-
gorithms is critical for the inference problem to converge [26].
Thus, the next research direction is to survey existing infer-
ence algorithms on varying benchmarks. While our focus is
on Monte Carlo (MC) methods, such as sequential Monte
Carlo [18] and Markov Chain Monte Carlo [19], we plan
to provide an analysis of variational inference methods that
consider inference as an optimization problem [27]. We plan
to implement varying Monte Carlo inference algorithms in
Miking CorePPL and determine potential improvements. The
main reason for not focusing on variational inference is that
phylogenetic studies that we plan to improve the inference
on for further studies focus on MC methods [28, 29]. The
final planned contribution is to enhance these algorithms to
efficiently handle the inference problems in the phylogenetic
field. We aim to have these contributions
• A comprehensive analysis of inference algorithms in the

context of probabilistic programming and phylogenetic field.
• Implementing a selection of the inference algorithms in Mik-

ing CorePPL. We will evaluate their performance on varying
models to discuss which inference algorithms are better for
certain models and identify potential improvements.

• Enhancement of the existing inference algorithms regarding
execution time and inference accuracy based on the analysis
from our survey for phylogenetic models.

• Evaluation of the modified inference algorithms on a series
of case studies in phylogenetics.

IV. CONCLUSION

With this research, we aim to improve inference efficiency
in universal PPLs. Utilizing model structures, as shown in
our previous works, provides significant improvements in
inference efficiency while preserving the expressiveness of the
models. The next research direction includes a comprehensive
survey of inference algorithms on varying models and the
implementation of selected inference algorithms in Miking
CorePPL. The survey will provide a guide for choosing
suitable inference algorithms based on the model properties
and insights to improve inference for phylogenetic models.



REFERENCES

[1] D. Blackwell, “Conditional Expectation and Unbiased
Sequential Estimation,” The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 105 – 110, 1947. [Online].
Available: https://doi.org/10.1214/aoms/1177730497

[2] L. Murray, D. Lunde;n, J. Kudlicka, D. Broman,
and T. B. Schön, “Delayed sampling and
automatic rao-blackwellization of probabilistic
programs,” in Proceedings of the 21st International
Conference on Artificial Intelligence and
Statistics (AISTATS), Lanzarote, Spain, April,
2018 :, ser. Proceedings of Machine Learning
Research, vol. 84, 2018. [Online]. Available:
http://proceedings.mlr.press/v84/murray18a/murray18a.pdf

[3] G. Baudart, L. Mandel, E. Atkinson, B. Sherman,
M. Pouzet, and M. Carbin, “Reactive probabilistic pro-
gramming,” in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation, ser. PLDI 2020. New York, NY, USA: As-
sociation for Computing Machinery, 2020, p. 898–912.

[4] E. Atkinson, G. Baudart, L. Mandel, C. Yuan,
and M. Carbin, “Statically bounded-memory delayed
sampling for probabilistic streams,” Proc. ACM Program.
Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi.org/10.1145/3485492

[5] E. Atkinson, C. Yuan, G. Baudart, L. Mandel, and
M. Carbin, “Semi-symbolic inference for efficient
streaming probabilistic programming,” Proc. ACM
Program. Lang., vol. 6, no. OOPSLA2, oct 2022.
[Online]. Available: https://doi.org/10.1145/3563347

[6] W. Azizian, G. Baudart, and M. Lelarge,
“Automatic rao-blackwellization for sequential monte
carlo with belief propagation,” in ICML 2023
Workshop on Structured Probabilistic Inference &
Generative Modeling, 2023. [Online]. Available:
https://openreview.net/forum?id=YNf2XCQqM1

[7] J. Lai, J. Burroni, H. Guan, and D. Sheldon,
“Automatically marginalized MCMC in probabilistic
programming,” in Fifth Symposium on Advances in Ap-
proximate Bayesian Inference, 2023. [Online]. Available:
https://openreview.net/forum?id=lmLRNZU0MY

[8] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of machine Learning research, vol. 3,
no. Jan, pp. 993–1022, 2003.

[9] C.-c. Shan and N. Ramsey, “Exact Bayesian inference
by symbolic disintegration,” in Proceedings of the
44th ACM SIGPLAN Symposium on Principles
of Programming Languages, ser. POPL 2017.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 130–144. [Online]. Available:
https://doi.org/10.1145/3009837.3009852

[10] D. Huang, J.-B. Tristan, and G. Morrisett,
“Compiling markov chain monte carlo algorithms
for probabilistic modeling,” in Proceedings of the
38th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: Association for Computing
Machinery, 2017, p. 111–125. [Online]. Available:
https://doi.org/10.1145/3062341.3062375

[11] A. V. Nori, C.-K. Hur, S. K. Rajamani, and S. Samuel,
“R2: An efficient mcmc sampler for probabilistic pro-
grams,” in Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, ser. AAAI’14. AAAI
Press, 2014, p. 2476–2482.

[12] M. D. Hoffman, M. J. Johnson, and D. Tran, “Au-
toconj: Recognizing and exploiting conjugacy without
a domain-specific language,” in Advances in Neural
Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., vol. 31. Curran Associates, Inc., 2018.

[13] R. D. Gray and Q. D. Atkinson, “Language-tree di-
vergence times support the anatolian theory of indo-
european origin,” Nature, vol. 426, no. 6965, p.
435—439, November 2003.

[14] P. Kapli, Z. Yang, and M. J. Telford, “Phylogenetic tree
building in the genomic age,” Nature reviews. Genetics,
vol. 21, no. 7, p. 428—444, July 2020.

[15] A. Clauset, C. Moore, and M. E. J. Newman, “Hierar-
chical structure and the prediction of missing links in
networks,” Nature, vol. 453, no. 7191, p. 98—101, May
2008.

[16] A. Kassian, “Towards a formal genealogical classification
of the lezgian languages (north caucasus): Testing various
phylogenetic methods on lexical data,” PLOS ONE,
vol. 10, no. 2, pp. 1–25, 02 2015. [Online]. Available:
https://doi.org/10.1371/journal.pone.0116950

[17] M. Dunn, S. J. Greenhill, S. C. Levinson, and R. D. Gray,
“Evolved structure of language shows lineage-specific
trends in word-order universals,” Nature, vol. 473, no.
7345, p. 79—82, May 2011.

[18] A. Doucet, N. De Freitas, N. J. Gordon et al., Sequential
Monte Carlo methods in practice. Springer, 2001, vol. 1,
no. 2.

[19] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan,
“An introduction to MCMC for machine learning,” Ma-
chine Learning, vol. 50, no. 1-2, pp. 5–43, 2003.

[20] J. Pearl, Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan kaufmann,
1988.

[21] D. Broman, “A vision of Miking: Interactive program-
matic modeling, sound language composition, and self-
learning compilation,” in Proceedings of the 12th ACM
SIGPLAN International Conference on Software Lan-
guage Engineering. Association for Computing Ma-
chinery, 2019, pp. 55–60.
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