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Abstract—This thesis explores the synergy of Split Computing
(SC) and Anomaly Detection (AD), presenting novel methodolo-
gies that enhance computational efficiency and detection accuracy
within an Industry 4.0 scenario. In particular, we investigate the
application of SC frameworks, where a Deep Neural Network
(DNN) is intelligently split with a part of it deployed on an edge
device and the rest on a remote server, to optimize resource
allocation in edge and cloud environments, enabling real-time
processing on large-scale industrial data. Additionally, to sig-
nificantly improve the robustness of defect detection systems,
we introduce novel techniques based on generative Artificial
Intelligence. Specifically, we enhance Diffusion Models for defect
image generation, which significantly improves the robustness of
defect detection systems. As a result, this thesis demonstrates
a substantial leap in contributing to on-edge, scalable, efficient,
and interpretable solutions for AD in Industry 4.0.

I. INTRODUCTION

Four major evolutions of industrialization have occurred
throughout human history, impacting economic growth, popu-
lation expansion, and major social transformations. The most
recent of these, known as Industry 4.0, has process automation
as its main priority, thereby reducing the intervention of
humans in the manufacturing process, and since, in the last
decade, Deep Neural Networks (DNNs) achieved state-of-the-
art performance in a broad range of problems, aligns perfectly
with the goals of Industry 4.0.

A fundamental role in Industry 4.0 is played by Predictive
Maintenance (PdM) since it guarantees the ongoing reliability,
efficiency, and optimal functionality of advanced technolog-
ical systems. The first step in PdAM is Anomaly Detection
(AD), which focuses on detecting abnormal behavior in the
equipment by analyzing the historical data of the equipment.
However, in the fast-changing world of industrial anomaly
detection, there are two main challenges. First, the systems
need to be accurate in identifying anomalies. Second, they
need to be efficient and use minimal resources, as many edge
and industrial devices have limited processing power.

This thesis addresses this need by integrating advancements
in the field of Split Computing (SC), where a DNN is
intelligently split with a part of it deployed on an edge
device and the rest on a remote server for real-time large-
scale processing. Moreover, it leverages the latest trends in
the Machine Learning (ML) learning research field for defect
image generation to significantly improve the robustness of
defect detection systems.

II. SpLIT COMPUTING

DNN models often present computational requirements that
cannot be met by most of the resource-constraint edge devices
available today [l]. This prohibits the full deployment of
DNN-based applications on these systems, leading to what
is commonly known as the Local-only Computing (LoC)
approach. However, using simplified models negatively affects
the overall accuracy. As such, the most common deployment
approach of DNN-based applications on resource-constraint
edge devices is the Remote-only Computing (RoC). With this,
the network runs on the server side, and the input is directly
transferred from the edge device to the server through a
network connection. Then, the server computes the inferences
and sends the output back to the device. However, such
data transfer could lead to excessive latency times, especially
in degraded channel conditions. As a compromise between
the LoC and the RoC approaches, recently suggested SC
frameworks propose to split DNN models into a head and
a tail, deployed on edge device and server, respectively.

In this regard, our first contribution is [2], in which we
propose a fast procedure to select the best-split location
for a generic DNN architecture that, for the first time, is
predictive of the accuracy that the system will have once
retrained. The method is dubbed I-SPLIT, where “I” stands for
interpretability. I-SPLIT builds upon the concept of importance
(or saliency) of a neuron, which is related to the gradient it
possesses with respect to the decision towards the correct class
for the specific input. Importance is exploited with success in
the Grad-CAM approach: Grad-CAM creates an input neuron
saliency map that indicates which parts of an input image are
more important for deciding a specific class. In particular, the
Grad-CAM approach has been proved to be strongly dependent
on the given trained model on which it runs, while other
approaches do not, making it perfectly suited to our purposes.

This work was further extended in [3]], in which we propose
Split-Et-Impera, a novel and practical framework that i)
determines the set of the best-split points of a neural network
based on deep network interpretability principles without
performing a tedious try-and-test approach, ii) performs a
communication-aware simulation for the rapid evaluation of
different neural network rearrangements, and iii) suggests the
best match between the quality of service requirements of
the application and the performance in terms of accuracy and



latency time.

At the same time, current state-of-the-art approaches in
different ML applications rely on advanced learning proce-
dures, such as the Multi-Task Learning (MTL). In particular,
MTL is a paradigm in which multiple related tasks are jointly
learned to improve the generalizability of a model by using
shared knowledge across different aspects of the input. This is
achieved by jointly optimizing the model’s parameters across
all tasks, allowing the model to learn both task-specific and
shared representations simultaneously. As a result, in [4], we
propose, for the first time ever, how to partition multi-tasking
DNN to be deployed within a SC framework, releasing the
MTL-Split architecture. With this design, we can handle mul-
tiple tasks concurrently instead of the current focus on Single-
Task Learning (STL) in SC, and through MTL, they increase
task performance, overcoming the challenge of preserving only
the performance of the main task.

III. ANOMALY DETECTION

Surface Defect Detection (SDD) is a challenging problem
in industrial scenarios, defined as the task of individuating
samples containing a defect, i.e., samples that do not conform
to a prototypical texture. In many real-world applications,
a human expert inspects every product and removes those
defective pieces. Unfortunately, humans are relatively slow in
accomplishing this task, and their performances are subject to
stress and fatigue.

Automated defect detection systems can easily overcome
most of these issues by learning classifiers on defective and
nominal training products. The main drawback is the data
collection process required to train a model effectively. Indeed,
defective items (i.e., positive samples) are relatively rare
compared to nominal items (i.e., negative samples). Thus, the
user may need to collect massive amounts of data to have
enough positive samples.

To solve this issue, generative Al can represent a powerful
tool for SDD, with defect image generation emerging as a
promising approach to enhance detector performance. Thus,
in [5], we propose a wild-and-creazy-idea to use a Diffusion
Model for AD in Industry 4.0 processes. From this article, we
have better understood the scientific challenges and formalized
the problem rigorously.

Specifically, we can distinguish two different scenarios: i)
when no defects are available (zero-shot data augmentation);
ii) when some defects are available, which could be very few
(few-shot, or N-shot with N small) or in a large number (full-
shot or N-shot with N large). In the first case, a human-in-
the-loop paradigm is employed. Specifically, a human operator
can drive the generation of proper defects by exploiting their
domain knowledge. This occurs using textual strings, which
condition the generation of positive samples asking for specific
defects (e.g., “scratches”, ‘“holes”). Instead, in the second
scenario, when anomalous samples are available, fine-tuning
can be done directly on them. In this case, human operators are
unnecessary since the model can already learn what a defect
looks like.

Due to the high complementarity of the two augmentation
policies, we decided to use them together in a novel ap-
proach, dubbing In&Out [6] data augmentation, since it is
a compromise between augmented images that are in and out-
of-distribution. In particular, we show that In&Out-generated
data allows the enrichment of the statistics of positive data
(in-distribution), ameliorating the downstream classification
performance in terms of recall.

This work was later extended in [6], in which we propose
an interactive learning protocol where a vision language
model is used to generate realistic images starting from
textual prompts. Specifically, we promote using Denoising
Diffusion Probabilistic Models (DDPMs) to produce fine-
grained realistic defect images that can be used as positive
samples to train an anomaly detection model. We name our ap-
proach DIAG, a training-free Diffusion-based In-distribution
Anomaly Generation pipeline for data augmentation in the
SDD task. By leveraging pre-trained DDPMs with multimodal
conditioning, we can exploit domain experts’ knowledge to
generate plausible anomalies without needing real positive
data. When using these augmented images to train an AD
model, we show a notable increase in the detection per-
formance compared to previous state-of-the-art augmentation
pipelines. Furthermore, since we dive into spatial control
approaches to enable the synthesis of defect samples, effec-
tively utilizing domain expertise to generate more plausible
in-distribution anomalies, we achieved high controllability and
interpretability regarding the generated images.

IV. FUTURE DEVELOPMENTS

In the future, concerning SC, we aim to discuss their impli-
cations on controller design for Cyber-Physical System (CPS).
Instead, regarding AD, we are planning further exploration
across various datasets, particularly investigating how robust
the image generation is compared to noisy textual prompts.
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