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Abstract—Developing a fully-fledged, data-driven digital twin
of a production line involves several challenges related to data
quality, data integration, and real-time simulation of models
from different dynamic systems. This PhD research aims to
leverage digital twin (DT) technologies to address these challenges
and create data-driven digital twin of a production line. Our
preliminary activities focus on conducting an extensive litera-
ture review to build theoretical foundations and exploring a
Functional Mock-up interface standard for integrating different
models into a single simulation environment. Additionally, we
present some preliminary results, which include a dataset of
real-time production parameters obtained from the additive and
subtractive manufacturing processes.

I. INTRODUCTION

A digital twin is a virtual representation of a physical system
or production plant, capable of simulating and replicating the
behavior of manufacturing operations in a virtual environment,
preventing equipment failures, enhancing efficiency, and im-
proving the quality of part production [1]. By creating a digi-
tal twin, manufacturing industries can test various scenarios
to optimize decision-making and reduce maintenance costs
through predictive maintenance and anomaly detection [2]. As
described in Figure 1, this PhD research aims to develop a
data-driven predictive digital twin using machine learning and
the FMI Standard. The digital twin will be able to simulate
the real-time behavior of the production plant, ensuring max-
imum product efficiency and reducing maintenance costs by
enabling predictive maintenance (PM) and anomaly detection
algorithms. Building a data-driven digital twin is a complicated
task, as it involves several challenges that need to be addressed
to develop a fully-fledged digital twin for a digital factory. The
challenges includes:

II. CHALLENGES IN DIGITAL TWIN IMPLEMENTATION

A. Difference Between Digital Twin And Digital Shadow:
To model a digital twin of a production plant, it is essential
to have a clear objective and a correct understanding of the
definitions of both "digital twin" and "digital shadow." These
are distinct terminologies, and it is crucial to understand the
differences between them before developing a digital twin.

Digital Shadow: Represents the current state of the physical
system with one-way communication between the physical and
virtual models.
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Figure 1: Data Driven Digital Twin.

Digital Twin: A DT not only mirrors the current state
but also incorporates simulation, predictive analytics, and
decision-making capabilities with bidirectional communication
between the physical and digital twins [3].

B. Data Quality: Smart manufacturing industries generate a
vast amount of data [4], from multiple sources, such as sensor
readings and historical records, which may include noise and
missing values. Therefore, it is essential to validate and apply
data pre-processing techniques.

C. Data Integration: Creating models to build digital twin
requires data from multiple sources [4], including sensor
readings, historical databases, etc. Integrating such diverse
and heterogeneous data sources into a single unified model
is a complex task therefore it is essential to developed tech-
niques that allows to integrate these diverse data sources and
facilitate the development of data driven Digital Twin (DT).

D. Real-Time Simulation: The digital twin of a production
plant includes various models representing the plant’s individ-
ual components [5]. Each model is built using different tools
and software and has its own data formats and computational
requirements, which requires the seamless integration of these
models by setting up a co-simulation environment to achieve
complete system simulation.

III. ONGOING ACTIVITIES

The current research activities focus on exploiting DT
technologies and addressing the challenges of developing a
fully-fledged digital twin for the production line. We are



currently working on collecting real-time production data from
additive and subtractive manufacturing operations to optimize
manufacturing operations and production recipe parameters.
Additionally, we are also exploring the Functional Mock-up
interface standard to create a dynamic digital shadow of our
production plant. This digital shadow simulates the plant’s
real-time behavior, allowing us to collect more manufacturing
data. We use this data to build high-fidelity machine-learning
models. By creating Functional Mock-up Units, these models
enable the setup of a co-simulation environment, which is
essential for creating a digital twin of the production plant.

IV. PRELIMINARY RESULTS

In the first months of the project, we created a dataset by
collecting real-time production data from additive and sub-
tractive manufacturing processes [6]. The dataset is collected
in the Industrial Computer Engineering (ICE) laboratory: a
research facility [7] at the University of Verona equipped
with a fully-fledged production line, assembled by using real-
world machinery connected by a sophisticated communication
and data collection architecture based on the OPC Unified
Architecture (OPC UA) standard, connecting all the machines
to the Advanced Manufacturing Controller (AMC) [8]. The
dataset includes real-time production parameters obtained dur-
ing the additive and subtractive manufacturing processes. This
includes 3D printing parameters, G-code parameters (e.g., hole
diameter, cutting depth, spindle speed) used for milling the
workpiece. We processed workpieces consisting of rectangular
cuboid shapes with different configurations, materials and
production parameters, as reported in Table I. Each workpiece
is assigned an ID ranging from 0 to 30 and is created
using different combinations of materials, infill levels, patterns,
spindle speeds, and feed rates. Varying infill levels and pattern
combinations are used to produce workpieces with different
structural and thermal properties. Moreover, different spindle
speeds and feed rate combinations are used to reduce the time
taken to process the workpieces and the heat generated during
the process.

V. CONCLUSION AND FUTURE WORK

In the future, we plan to extend the dataset by applying addi-
tional manufacturing operations from the ICE production line.
We also aim to explore AI-based modeling techniques to build
predictive machine-learning models that can analyze historical
and real-time data to predict potential maintenance require-
ments, anticipate failures, and optimize performances. These
models will be used to create dynamic digital shadows of the
production line and further develop into a fully-fledged digital
twin using advanced real-time data integration techniques. For
the final thesis, we aim to combine all these dynamic models
generated into a single simulation environment using the Func-
tional Mock-Up interface standard to achieve complete system
simulation. Additionally, we will explore data management
and visualization tools or software to build dynamic and
interactive dashboards for monitoring and interacting with
the digital twin model. The final phase of the PhD thesis

Table I: Dataset Description

Parameter Values Description

ID 1-30 Identifier of the workpiece

Material

PLA, PETG,
Polycarbonate,
ABS, Nylon,
Carbon Fiber

Material used to print the
workpiece

Infill Level 15, 30,
50

Infill percentage of the
workpiece

Infill Pattern Rectilinear Internal infill structure of
the workpiece

Spindle speed
(RPM)

200, 250,
280, 300,
350, 400

Velocity of the spindle during
the milling processing

Feed Rate
(mm/min)

50, 100,
150, 220,

270

Speed at which the cutter
engages the workpiece

Cutting Depth
(mm) 9 Depth of the holes

Hole Diameter
(mm) 4 Diameter of the holes

involves scalability analysis and at-scale validation which aims
to enhance and optimize our digital twin model performance,
by simulating and anticipating different operational scenarios,
it involves validation of the model through co-relation between
experimental data and the simulated data, creating a simulation
scenarios to mimic the real world conditions and predict the
model’s behavior accurately. By conducting this scalability
analysis and validation, we ensure the reliability and accuracy
of digital twin predictive capabilities and real-time analysis
and the final outcome of the digital twin model is align with
our actual research objective.
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