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I. INTRODUCTION

Deep reinforcement learning (RL) has demonstrated learn-
ing control policies, also called agents, that match or exceed
the performance of humans in games such as Atari [16]
and Go [20]. However, similar success stories are absent
when it comes to cyber-physical systems (CPS) [10], such
as humanoid robots. Viral demonstrations in robotics often
use manually constructed control policies [12]. The possibility
of combining deep learning techniques such as image, audio,
and text recognition with RL for CPS opens up for robots
to perform human-level tasks, with significant benefits such
as replacing humans in dangerous work environments where
the task is too difficult to encode manually or when the robot
needs to learn and adapt to a changing environment.

A likely key reason why RL is more difficult for CPS is that
real data is less accessible than simulated data. State-of-the-art
RL algorithms such as PPO [19] and SAC [8] usually require
millions of samples before learning a decent policy, as well
as requiring the system to explore good and bad states. Not
only is this time-consuming, but depending on the CPS it can
also be expensive or dangerous when exploring bad states. An
active area of research trying to address this problem is called
sim2real (or sim-to-real) [21, 24], where the policy is learned
on a simulated version of the system, and then transferred
and applied to the real system. While this solves the sample
efficiency and cost problems, even small inaccuracies in the
simulation against the real system can cause a policy that is
good in simulation to fail when applied to the real system.

In the scope of our thesis, we investigate topics related to
the following problem:

Design and implement reinforcement learning meth-
ods that exploit prior information about a system,
and demonstrate that those methods work on physi-
cal systems to solve a desired task.

We present ongoing work in two papers as well as topics
of interest for future research. The first paper investigates
an RL methodology of exploiting the knowledge of delayed
interaction of a physical system to learn a better policy, while
the latter paper investigates a method of exploiting access to
the CAD design of a system to streamline the development of
learned control policies for users not necessarily familiar with
simulation or RL.

A key goal with the thesis is to combine the developed
methods and evaluate them on a physical humanoid robot,
performing tasks such as standing up from lying down, and
walking.

II. ONGOING WORK

A. Interaction Delayed Reinforcement Learning

A problem with the standard formulation of RL is that it
assumes that either interaction is instantaneous or that the
relevant parts of our surroundings remain unaffected unless
we (the agent) act upon it, neither of which may be true for
physical systems such as a self-driving car or an autonomous
drone. In the standard formulation, the agent observes the state
of the system (reading the sensors), generates an action based
on that state, and applies the action on the same system state
that was observed. In reality, there will be a delay in observing
the state, in deciding on an action, and in applying the action
to the environment [3, 23], the combination of which we refer
to as the interaction delay which is visualized in Figure 1.
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Fig. 1. Illustration of contibuting factors to interaction delay.



An example of interaction delay would be an autonomous
drone where necessary computational resources cannot fit on
the drone. The drone would then wirelessly transmit video and
sensor readings to a computational server, the server would
spend time inferring an action based on a deep neural network,
and then send the action back to the drone to be applied to its
motors. The negative effect that this interaction delay has on
the agent unless accounted for has been demonstrated both in
simulation and for physical systems [21, 11].

A common approach used by previous work is the concept
of an action buffer [14, 7, 18, 5, 1, 11], which is assumed
to be able to immediately apply an action as the state is
being observed, for example by being implemented on a small
microcontroller on the system itself. In this setting, the agent
instead sends actions ahead of time to this action buffer, which
is responsible for applying the action at the intended time.

There have been several algorithms proposed where the
actions are generated ahead of time, either by assuming that
the delay is constant [7, 18, 5, 11] or observable by the
agent [1]. We investigate a more realistic scenario, where an
unobservable random interaction delay varies as we interact
with the environment.

Our solution to this setting learns a predictive model of
the environment, represented as a deep neural network, which
can predict states for many different possible steps ahead and
generate actions based on those predictions. The advantage
of this predictive approach is that it can generate actions for
any length of delay, whereas previous approaches focus on
learning policies which only generate actions for a specific
delay [18, 1, 11]. While this kind of predictive solution has
been disregarded by previous work for not performing well
[11], our preliminary results show that this approach does work
with the right kind of neural network architecture.

B. Streamlining RL for Cyber-Physical Systems

As previously discussed, sim2real is a method in which
agents are learned in simulation before being applied to real
robots as a way to make training faster, safer, and cheaper.
These are properties desirable for those designing domain-
specific robots on a smaller scale, which cannot afford to
manufacture large amounts of robots for testing. However,
the sim2real methodology requires that a simulator and RL
environment is created for the system, neither of which may
be expertise that the domain experts possess.

We envision a methodology which abstracts the simulation
and RL behind an annotation interface, where the domain
experts annotate a CAD model of the system with properties
such as materials, servos, and the high-level objective that
it wants the system to achieve (e.g. get to the other side of
the wall). A simulator and RL environment are automatically
generated from these high-level annotations, which learn a
policy that attempts to fulfill the annotated objective.

A key aspect we see with this approach is that it enables
rapid prototyping, which contrasts much of related work which
focus on commercial platforms [21, 24]. For example, if an

issue is detected when evaluating the learned policy in simu-
lation or on the real system, the CAD model or annotations
are adjusted accordingly to fix the issue and the simulator and
RL environment are automatically generated for the updated
CAD model.

This high-level interface poses several technical challenges,
such as how to handle hard-to-model aspects including fric-
tion, flexibility of materials, actuator power consumption, etc.
There is also the issue of generating sufficiently informative
reward signals, which is regarded as a non-trivial problem.
We look at various ways of overcoming this, such as allowing
for fine-grained annotations of soft and hard constraints.
A soft constraint is something that is discouraged but not
forbidden, whereas a hard constraint is strictly forbidden from
happening. We have evaluated these kinds of constraints on a
custom-designed quadruped robot and found that they make a
significant difference in the quality of the learned agent both
in simulation and when evaluated in the real world.

III. TopricS FOR FUTURE WORK

An issue with RL, which is not as apparent in regular
supervised learning, is that there is a lot of custom code
created for each problem that guides the learning process. The
code used for learning also suffers from being implemented
in different backends that do not efficiently integrate, such
as PyTorch [17] for training and MuJoCo [22] for simulation.
This issue has also been highlighted by Nvidia, who developed
Isaac Gym to allow training and simulation to be efficiently
run in the same backend [15].

A possible joint interface that solves this issue is domain-
specific languages (DSL) which translates a high-level de-
scription of the training to generate code that runs on a joint
backend. While frameworks such as Isaac Gym run on a
unified backend, it is restricted by the API to that backend.
Having a DSL that translates code into a unified backend
allows the user to specify things such as custom environment
dynamics using differential equations. The compilation could
target high-level machine learning backends such as JAX
[2], PyTorch [17], or something lower level like MLIR [13].
Apart from enabling more efficient execution, a joint backend
also opens up for adaptation of RL algorithms that require
specific properties from the environment, such as differentiable
transitions [9].

This holistic approach also opens up opportunities such
as statically checking correctness in various aspects of the
training procedure which is highly sensitive to errors. Chal-
lenges with this include finding the right level of abstraction
that allows for flexibility in the language while still being
able to reduce subtle, but critical errors such as incorrect
post-transform probabilities, optimization targets, broadcasting
operations, etc.

Additional opportunities include the ability to more easily
compose different RL methodologies, such as the more estab-
lished online RL algorithms with the more recent offline RL
algorithms [4, 6], where the latter allows the agent to learn
without having to interact with the environment.
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