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Abstract—Place-and-route (P&R) plays a key bottleneck in
integrated circuit design, and existing approaches for P&R fall
short in correctness and methodology. We introduce an SMT-
based approach which addresses these concerns and introduces
some new possibilities for improved co-optimization of designs.
We introduce the system design and problem encoding and show
some preliminary results.
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I. INTRODUCTION

Integrated circuit design costs remain unsatisfactorily high
[1] [2]. Promising novel design methodologies such as agile
hardware design [3] are hindered by a bottleneck in physical
design. [4] [5] [2] Place-and-route (P&R) (shown in Figure
1) is the key problem in physical design. Two significant
factors in the difficulty of P&R are the lack of correct-by-
construction approaches and limited adoption of improved
software engineering methodologies [2].

In this work, we introduce an SMT-based compiler frame-
work for P&R. With this approach, we no longer have to
manually write tedious search/matching/routing algorithms.
Instead, we leverage advanced modern SMT solver capabilities
for ameliorated correctness, security, and effort. [2] Moreover,
the correct-by-construction nature of SMT as formal methods
eliminates the time-consuming step of LVS [2]. Our approach
also reduces software engineering efforts. We replace separate
traditional EDA tools (i.e., placer, router) with a single tool
for enhanced security and lower debugging time.

We also open up possibilities for co-optimization between
placement and routing by providing the solver with the free-
dom to co-adjust and optimize variables traditionally fixed
and decided by separate tools. Additionally, our approach also
allows for the trade-off between optimality and design time,
as well as the use of soft constraints and designer insight
in the pre-placement stage. [2] SMT has shown promise in
other domains such as computer graphics [6] and web layout
rendering. [7]

Fig. 1. The key problem in physical design is place-and-route which converts
a netlist of cells into a physical layout.

Fig. 2. A summary of our system as a whole.

II. SYSTEM DESIGN

Our compiler takes in an input netlist and encodes the place-
and-route problem as an SMT-LIB formulation, as shown in
Figure 2.

Figure 3 illustrates our compiler flow. The input netlist

Fig. 3. Overview of our compiler flow.



is first parsed and converted into geometry, which includes
cells, wires/routes, placement and routing grids, and ports.
This is followed by an initial translation into an SMT problem.
We also incorporate several compiler transformations, such as
bitvector and overflow handling. These transformations are op-
tional and can be enabled or disabled to enhance performance.
Using a solver abstraction layer, we then make one or more
calls to solves like [8] [9]. The resulting model is then reverse
transformed to match the original SMT problem and validated
using dolmen [10]. Finally, the solution is mapped back to
geometry, producing a layout and visualization.

Key contributions include a geometry engine for processing
and handling rectilinear shapes and basic operations and con-
straints. We also introduce encodings for VLSI geometry ob-
jects such as cells, wires/routes, placement and routing grids,
and ports. We have also incorporated optimization strategies
and transformational techniques to improve the performance.
Finally, we feature an iterative CEGAR/counterexample-style
meta-solver for efficient solving.

III. ENCODING

Fig. 4. Placement and routing constraints are simultaneously considered, a
significant feature enabled by SMT.

To being with, we follow two conventions for encoding
which are commonly used [11]: 1) the Manhattan grid using
integer variables, and 2) rectilinear layout. We also use grid-
based placement and a channel routing grid.

The first phase of our encoding process involves converting
from a netlist to a geometry-based representation. This is
necessary because the standard RTL/netlist AST is inconve-
nient for physical design because in physical design, we are
primarily concerned with the geometry of components rather
than their logical relationships. Thus, in the second phase of
our encoding, we convert from geometry to rectangles.

Rectangles are defined as follows:
• width ∈ Z
• height ∈ Z
• ll ∈ (Z,Z)
This allows us to then very easily define rectangle non-

intersection using four disjunctions. Rectangle intersection is
a key constraint in this problem.

The channel-based routing grid is parameterised by
grid_width which represents the width of each routing

track, and grid_pitch, representing the repeating width.
Each routing segment, as defined below, can be mapped 1:1
to a rectangle.

• Track number - tn ∈ Z
• Span - s ∈ (Z,Z)
• Orientation - o ∈ B
Routes are sequences of connected routing segments. Multi-

point routes are represented as a sequence of routes which all
join at a central point. Standard cells can have complex layouts
with areas connected to different nets as well as carveouts.
To handle this complexity, we decompose standard cells into
basic rectangles as well. We use a placement grid where
the placement of cells is restricted by ”snapping” to certain
locations. In digital circuits, cells must be placed in an orderly
manner for many considerations including power straps.

Our placement and routing are overlaid and done simul-
taneously, as shown in Figure 4. This is radically different
from traditional EDA. Placement and routing grids co-exist
on the same layer, and all objects, including cells and routes,
exist simultaneously as well. This has implications for object
consistency, as well. For example, if a placement location is
occupied by a wire or obstruction, it becomes unavailable.
Similarly, if a routing track is occupied by another object, it
is also unavailable.

We ensure layer consistency and object consistency as
fundamental constraints. We do not use uninterpreted functions
and instead opt for a fixed number of variables without
quantifiers to improve performance. This use of a fixed model
size may limit the complexity of designs or overapproximate
them. Our compiler provides meta-parameters, such as the
number of segments allowed per linear route, in order to
accommodate for this. Finally, our approach also considers
the future incorporation of clock trees and power grids but
leaves their implementation to future work.

IV. PRELIMINARY RESULTS

Fig. 5. Overview of our compiler flow.

We experiment with a 1-layer 5-stage inverter chain. At the
moment, our focus has been on answering the first research
question, ”RQ1: What is the best solver configuration for this
problem?”. Results are shown in Figure 5. However, we are
continuously working on answering both ”RQ2: How does
the performance scale?” and ”RQ3: Comparison with existing
tools.”
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