
Model Compression by Exponent Sharing
Prachi Kashikar

School of Computer Science and Mathematics
Indian Institute of Technology Goa, India

I. INTRODUCTION

AI on the edge has become a significant focus of research
in the past decade. This area involves deploying various appli-
cations in computer vision and natural language processing on
small devices with limited on-chip memory and battery power.
The neural networks require large storage space, It is crucial to
compress the models to make them fit into these tiny devices.

The current model compression techniques, such as quanti-
zation [7], weight sharing, and pruning [8], reduce the size
of the model by sacrificing some accuracy. We propose a
new lossless model compression approach that makes use of
the exponent distribution in weights for a trained model. We
demonstrate how exponent sharing in weights can help reduce
memory requirements. It is important to note that our proposed
”exponent sharing in weights” method is different from the
existing ”sharing of weights” approach. Additionally, one can
apply exponent sharing on top of other existing compression
methods as well. We also discuss how exponent sharing affects
the memory and execution time of processors and FPGAs [4].

II. METHOD

The size of a machine learning model depends on the
number and type of parameters used to represent it. These
parameters are typically stored in floating-point formats, which
offer greater precision and can represent a wider range of real
numbers. According to the IEEE 754 standard for floating-
point representation [2], every floating-point value is a com-
bination of sign, exponent, and mantissa.

A. Proposed Floating Point Storage Format

In the IEEE single-precision format, there are 256 possible
exponent values. However, in reality, there are thousands of
weights in a given model, and many of these weights have the
same exponent value. For instance, in a trained LeNet model
as shown in Figure 1, only 6.25% of possible exponents are
present in the weights. To exploit this fact, we propose a new
floating-point storage format that leverages the presence of
multiple exponents with the same values. This format can be
applied to any real value representation format that utilizes the
mantissa-exponent method for number representation.

We have devised a new method to store only the unique
exponents of floating-point weights in a separate exponent
table. This method replaces the exponents from IEEE floating-
point formats with respective indices that refer to the exponent
table. As a result, every floating-point weight becomes a
combination of three components: sign, index, and mantissa.
If a layer’s weights have k distinct exponents, the number of
index bits required is determined by, i = ceil(log2(k)).

Fig. 1. Exponent frequency distribution in LeNet

If s, e and m denote the number of bits for sign, exponent
and mantissa, respectively then the memory needed after
exponent sharing (Mcomp) is,

Mcomp = N × (s+ i+m) + e× k, (1)

where N is the total number of weights in a layer and i
is the number of index bits. Our method [3] exhibits better
performance when layer-wise exponent sharing is applied.
Figure 2 provides an illustration of how the exponent sharing
works on a small weight matrix.

0.0076 -0.00091 -0.0095

-0.042 0.00074 0.00082

0 1 1

1 0 0

119 116 120

122 116 116

7932268 7245073 1811939

2885681 4324495 5698885

1 2 3

4 2 2

119
116
120
122

Floa�ng Point Weights

Sign

Exponents

Man�ssaIndices Exponent Table

Iden�fying dis�nct 
exponents

Proposed 
Storage 
Format

Fig. 2. Illustration of storing weights in the proposed format

B. Execution Time Overhead

The time it takes for a model to execute depends largely
on how many generalized matrix multiplications (GEMM) are
present in each layer. Our proposed indexing-based method
requires three reads, as opposed to just one read when such



indexing isn’t used. This could potentially increase execu-
tion time when using single-threaded implementations on
microprocessors. However, this overhead in execution can be
minimized by performing parallel reads on accelerators like
FPGAs [5].

1) Sequential Architecture: Our proposed method requires
three additional reads to access the same weight that is fetched
in a single read in sequential architecture. For a GEMM of any
layer, if the weight tensor is M × N and the input tensor is
N ×O, then the cycle count can be given by

CexpSharing = Corig +M ×N ×O, (2)

where Corig is the number of clock cycles before exponent
sharing and CexpSharing is the number of clock cycles after
exponent sharing.

2) Parallel Architecture: We observed about a 9-10 %
impact of exponent sharing on the execution cycles when
non-pipelined hardware is used. To reduce this impact we
designed parallel architecture where reads are done in parallel.
Here, multiple reads are possible in the same clock cycle due
to multi-port on-chip memories like Block RAM. We used
pragmas like Pipeline in the high-level synthesis tool Vivado
HLS to parallelize operations, including memory reads. In this
scenario, the cycle count is given by

CexpSharing = Corig +M ×O (3)

Using equations 2 and 3, we can find out the execution cycle
overhead that would result because of exponent sharing in a
GEMM of any layer.

III. EXPERIMENTS AND OBSERVATIONS

We discuss results using BFloat16 [1] floating point format
as it has more benefit of proposed exponent sharing. It is a 16
bit representation of a float having half space (8 bits) allocated
for exponents. The results reported are using Vivado HLS set
for part xc7z020clg484-1 on Zynq Zedboard with a default
clock period of 10 ns.

A. Compression Results

We have demonstrated our approach on the layers of the
Tiny-tiny-tiny YOLO (TTT-YOLO) model from the Darknet
framework with pre-trained weights [6]. This model is a tinier
version of YOLO having 8 convolutional layers. Here, we
discuss the results on three smaller layers. Table I shows the
dimensions of GEMM in those three layers of this model.

TABLE I
GEMM SIZES OF LAYERS IN TINY-TINY-TINY YOLO

Layer Input Filters GEMM Size
Conv 2 28x28x32 (3x3x32)x128 [128x288][288x560]
Conv 5 7x5x512 (1x1x512)x256 [256x512][512x35]
Conv 7 7x5x512 (1x1x512)x125 [125x512][512x35]

Table II reports the total weight memory in bits Before
exponent sharing and After exponent sharing as well as the
compression ratio achieved in percentage.

TABLE II
COMPRESSION ON THE LAYERS OF TTT-YOLO

Layer Before After % Memory Saved
Conv 2 9437184 7667920 18.74
Conv 5 2097152 1704100 18.742
Conv 7 1024000 832160 18.734

B. Execution Speed Overhead

To find out the applicability of proposed eq 2 and eq3
reporting the execution time overhead, we measured the clock
cycles required by the GEMM of a layer with and without
exponent sharing on various architectures.

As sequential reading after exponent sharing needs three
more reads for every weight, the performance is impacted
as per eq 2. The impact on clock cycles is less than 10%
percent in all the layers. We have demonstrated exponent
sharing on GEMM with Pipeline pragma from Vivado HLS
resulting in parallel reads. The performance impact abides by
the relationship shown in eq3. In all of the cases, the impact
is less than 1%. The complete results along with few other
variations are discussed in [4].

TABLE III
CLOCK CYCLES IMPACT AFTER EXPONENT SHARING ON THE LAYERS OF

TTT-YOLO ON FPGA

Layer % Increase in Clock Cycles
Conv 2 0.069
Conv 5 0.039
Conv 7 0.039

IV. CONCLUSION

The proposed method is capable of compressing models
without affecting their accuracy. It does not require any
additional fine-tuning after model compression, thus avoiding
any potential overhead. In FPGA implementations, parallel
reads can be used to fill the gap in execution time before
and after exponent sharing. The code for the GEMM with
our implementations is available on GitHub1. In our future
work, we aim to enhance memory savings by using exponent
approximations during the training phase itself.
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