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Abstract—Model-driven engineering (MDE) addresses the
complexity of modern-day embedded system design. Multiple
MDE frameworks are often integrated into a design process to
use each MDE framework’s state-of-the-art tools for increased
productivity. However, this integration requires substantial de-
velopment effort.

In this paper, we propose an MDE framework based on a for-
malism of system graphs and trait hierarchies for programming-
language-agnostic integration between tools within our frame-
work and with tools of other MDE frameworks. Implementing
our framework for each programming language is a one-time
development effort.

We evaluate our proposal in an MDE design process by
developing a Java supporting library and an AMALTHEA
connector. Then we perform an MDE industrial avionics case
study with both. The evaluation shows that our framework
facilitates the integration of different tools and the independent
development of different system parts. Therefore, our framework
is a reliable MDE framework that lowers the effort of integrating
tools to benefit from their combined state-of-the-art.

Index Terms—Model-driven Engineering, System Modelling,
Collaborative Tools

I. INTRODUCTION

Modern embedded systems design include a large number of
aspects, from integrating different functionalities, to satisfying
non-functional requirements and reducing production costs.
This design complexity not only makes systems design harder,
but also increases the penalty for wrong design decisions [1].

Model-driven engineering (MDE) is an approach that tack-
les this complexity by using models [2], [3]. These models
then become the primary inputs and results of design activities
involved in the embedded system design process. In this
context, an MDE framework is a collection of models and
tools that operate on these models to abstract design activities.

Frequently, an MDE embedded system design process has
to integrate multiple tools from MDE frameworks in order
to benefit from the state-of-the-art each tool provides at
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different phases of the design process. However, this integra-
tion between tools from different MDE frameworks requires
substantial engineering effort [2].

An alternative to tool-to-tool integration that lowers the
required engineering effort is to use a common model across
the tools being integrated (Figure 1). These common models
tend to be complex in order to properly abstract the design
process, e.g. UML/SysML [4]; consequently, it has been
observed that different tools might use different subsets of
the same common model [2]. In this scenario, the integration
between tools based on a common model requires keeping
up-to-date the different subsets of the model (Figure 1a). This
synchronization requirements between different subsets is an
unintentional source of effort that hinders integration between
tools via common model approaches. In the best case, the
synchronizer is a tool that must be updated when any of the
subsets that it keeps synchronized changes.

| synchronizer

Subset 1 Subset 2
Common model

(a) Common model integration with different subsets kept up-to-
date by a synchronizer. The conceptual overlap of the subsets is
represented by a visual overlap.

% |

Proposed MDE framework
View 2
View 1 | View 3

lang. 2
sup. library

Common model

(b) Common model integration in our framework without synchro-
nization.

Fig. 1: Conceptual view of the integration approaches. “lang.”
is a short-hand of ‘“Programming language”.

In this paper we propose a novel extensible MDE framework
based on a common model that addresses this integration
limitation by combining the following two key properties:

1) the framework’s common underlying model is based on
a formalism of system graphs and trait hierarchies that



is consistent across different tools and supports cross-
cutting views (Section III),

2) the framework’s implementation for each programming
language is a one-time engineering effort that eases the
development of integrated tools in our framework and
connections of tools in our framework to tools of other
MDE frameworks (Section IV).

With these two properties, the tools are integrated in a pro-
gramming language agnostic fashion by viewing parts of the
unique common model without synchronization. To the best
of our knowledge, our framework and its concepts are the first
MDE framework to support both key properties mentioned.
We provide a proof-of-concept Java supporting library and
an AMALTHEA framework [5] connector (Section V); and
showcase our proposed framework through an industrial avion-
ics embedded MDE design process case-study (Section V).

II. RELATED WORK

We survey in the related literature other frameworks and
approaches that directly or indirectly address the effort of
integrating tools in an MDE design process.

The ARCADIA methodology with its Capella tool is an
integrative MDE framework that supports multi-stage design
processes [6]. Cross-cutting concerns are expressed through
the use of nested view points, in which the detailed system
model is increasingly abstracted. Capella shares many goals
and capabilities to our framework, but does not provide a
language-agnostic implementation approach to integrate tools
of other frameworks.

SPIRIT [7] is another MDE framework that promotes an
interconnected multi-stage design process through a service-
oriented approach. SPIRIT treats different models and tools
in a top-down fashion and connects them by considering
each tool as a service and orchestrating their execution. A
distinction of our approach to SPIRIT is that the service-
oriented architecture is optional: different tools connect to
the same model conceptually, and not to each other directly.
Moreover, our proposal provides a Java freely available sup-
porting library. The Octopus toolset [8] framework is similar
to SPIRIT in terms of integration, but with a narrower scope
that focuses on Design Space Exploration (DSE).

CrossEcore [9] is an MDE framework that extends the
Eclipse modeling framework (EMF) with cross-platform capa-
bilities: different MDE tools can share results by defining the
same meta-model and connecting their data through CrossEc-
ore. Although CrossEcore addresses the tool integration limi-
tation as our framework, it does not conceptually incorporate
cross-cutting viewing, as in SysML [4].

The Functional Mock-up Interface (FMI) is a simulation-
focused standard that enables simulation tools to exchange a
simulatable common model [10]; as FMI is a standard, tools
that consume the common model must implement the standard
directly or use a third-party development library. Similarly,
the Ptolemy II project is an MDE framework with a simulat-
able common model that aids in the design of heterogenous
embedded systems [11]. Contrary to FMI, the Ptolemy II
project provides a common model called MoML [11], and

a Java library for tools to interact with this model. The
AMALTHEA model and its development platform App4mc [5]
is another MDE framework that targets automotive embedded
systems. AMALTHEA covers more aspects than functionality
and simulation, in contrast to Ptolemy II and FMI, but does
not provide a simulatable common model; rather, the model
is used to exchange data between automotive tooling. Since
App4mc is based on EMF, the integration is limited to
other EMF-based tools or tools running in the Java virtual
machine. In summary, these domain-specific MDE frameworks
(or standards) follow the common model approach to integrate
tools in their domains, but lack either of the two key properties
our framework has.

Finally, EAST-ADL [12] and the MARTE profile for UML
[13] are variants of UML/SysML which try to address the
synchronization problem of Figure la by specializing UM-
L/SysML. Like FMI, these variants are standards and do not
provide first-party library for tools to be connected. There
exist, however, established third-party tools for EAST-ADL
and UML/MARTE such as Papyrus [14] that fill this gap.
Therefore, their comparison with our framework is the same
cited for AMALTHEA (App4mc) and FML.

III. THE FRAMEWORK OVERVIEW

The proposed framework is split in two components: the
system graph component and the trait hierarchy component.
For simplicity, we consider S to be the set of all finite-length
strings (made from Unicode) and B = {T, L} to be the set
of boolean values.

(a) SDF application

actor B:
SDFActor, Source

production = {}
consumption = {i = 3}

‘ SDFEdge ‘ port: i
port i
SDFChannel SDFEdge
initial Tokens: Integer port consumer

channel A to B:
SDFChannel

initialTokens = 0

producer: single out
SDFActor via SDFEdge
consumer: single in
SDFActor via SDFEdge

port: producer

%7 port: consumer
‘ SDFElem port producer
SDFEdge
Z% port o
SDFActor

actor A: SDFActor, Sink

production = {o = 2}
consumption = {}

production: Map from
String to Integer
consumption: Map from
String to Integer

port: o

(b) SDF Trait hierarchy (c) SDF System graph

Fig. 2: Example model of a SDF application (a), a trait
hierarchy for SDF applications (b) and a system graph (c)
for the application. Both trait hierarchy and system graph are
shown in an UML-like format.



A. System graph component

A system graph is a tuple G = (V, E) that includes the
information about the system. This information can contain
application, platform and design constraint information. A
tutorial example is shown in Figure 2, where a system graph
models a Synchronous Dataflow (SDF) application [15].

An SDF application is a network of concurrent processes,
called actors, connected through unbounded FIFO channels.
Each actor consumes and produces a fixed number of tokens
in its input and output channels, respectively. An actor can
fire as long as its input channels have enough tokens. In the
SDF example of this paper, we ignore unconnected inputs and
outputs of SDF applications as we focus on their analysability.

The example in Figure 2 also shows how the system
information is concretely stored as a graph G. For each vertex
v € V, there is an identifier n,, € S, nested properties D, € D
(defined next paragraph), ports P, C S, and trait declarations
T, C S. For each edge e € E, there are the source and target
identifiers s.,t. € S, the optional source and target ports
$Des tp, € SU {0}, and trait declarations 7, C S. The empty
set is used for optional port existence, and it is not equal to
an empty string.

The property set D of nested dictionaries can be inductively
constructed by values d, where d is one, and exactly one, of
the following:

1) a string, boolean or numeric literal: d € SUR U B,

2) a finite sequence of length n € N in D: d € D",

3) a dictionary of n € N entries with integers or strings
(exclusive or) as keys and other properties as values:
de(ZxD)" orde (SxD)".

For any v, D, is a dictionary with string keys (S x D)™.

The string-centric definitions given for vertices and edges

do not imply that edges in E connect vertices in V. We define
the concept of proper system graphs to express this matched
connectivity. A system graph G = (V, E) is a proper system
graph if, for any e € F there exists v,v’ € V so that: n, = s,
Ny = te, $pe # 0 — sp, € P, and tp, # ) — tp. € P,/. In
other words, every edge links vertices that indeed exist in V'
of G and that the ports it declares indeed exist in both source
and target vertices. That is, a proper system graph G is similar
to a directed graph. System graphs are assumed to be proper
in this text, unless otherwise specified.

B. Trait hierarchy component

A trait hierarchy 7T is a tree of traits where each trait
is a set of property and port requirements for vertices of
system graphs, or connected vertices requirements for edges
of system graphs. Consider, for instance, the trait hierarchy
of SDFs in Figure 2b. Four traits are defined in this hier-
archy: SDFEdge for connections between vertices declaring
SDFElem; SDFActor for actors, which requires the presence
of two dictionaries with integer keys, production and consump-
tion; SDFChannel for channels, which requires the number
of initial tokens and two connected vertices via SDFEdge
edges in ports producer and consumer.

Formally, a trait hierarchy is a partially ordered set 7 =
(T, <r) in which (<7) stands for the refinement relation.

Whenever clear from context, We say for a trait ¢ that ¢t € T
as a short-hand for ¢t € T, and we use < instead of <.

By convention, traits associated with vertices and edges not
refine each other. Mathematically, for a vertex trait t, € T
and an edge trait t, € T'\ {¢,}, neither ¢, < t. nor t, < t,.
This convention is exemplified in Figure 2b, where SDFEdge
does not refine or is refined by the other (vertex) traits.

A vertex can declare a trait t € T, that is not part of 7, in
which case the trait is opaque. Opaque traits have no property
and port requirements according to the hierarchy considered.
This is fundamental to define the behaviour of a tool that work
with system graphs containing traits outside the trait hierarchy
of the tool (Section IV). For example, the system graph in
Figure 2c conforms to the trait hierarchy in Figure 2b, while
it contains two opaque traits: Sink and Source.

We formalize the requirements imposed by traits through
four functions of a trait t € T as follows.

First, the verfex required ports Pr(t) returns a tuple
(p,m,a, io, tn, te), where p is the port; m and a are boolean
values signalling if there are multfiple connected vertices
to this port and if they are ordered, respectively; tn is
the connected vertex(es) optional trait; te is the connecting
edge(s) optional trait; io € {in, out, inout} describe the edge
orientation of connected vertices to port p. The “producer”
(Figure 2b) of SDFChannel, for example, is the tuple
(producer, L, 1, out, SDFActor, SDFEdge).

Second, the vertex required properties Dr(t) returns a tuple
(s,) where s € S is the required property’s name and « is
required property’s data type. In our context, these data types
are a restriction of allowed properties in D. For example, the
“consumption” (Figure 2b) required property of vertex trait
SDFActor has data type (S x R)", for any n € N.

Third and fourth, the allowed source trait Sr(t) and allowed
target trait Tr(t) define the allowed traits in 7 for both source
and target vertices. These can be used for validations that are
not possible with vertex port requirements.

Finally, we say a system graph G conforms to a trait
hierarchy T if:

1) each vertex that declares a trait ¢ has the properties in
line with Dr(t), and the ports with its connected vertices
and edges in line with Pr(t);

2) each edge that declares a trait ¢ connects vertices in line
with Sr(t) and Tr(t).

C. Multiple views

We extend the notion of views from SysML [4] to describe
how tools are integrated in our framework. A view of the
system graph is a subset of the information contained in the
system graph, which discards ports, properties, vertices and
edges that are not relevant for this view. Therefore, views
can be used for assessment of cross-cutting concerns as in
SysML [4], but also by tools. In our framework, a view of
the system graph is given as a set of traits. For example, in
Figure 3, the SDF application is the SDF view of the system
graph (Figure 2a), given the SDF trait hierarchy of Figure 2b.

An important consequence of this notion is that a sys-
tem graph view is invariant to new irrelevant information,
allowing tools to be integrated seamlessly in our framework



(Section III-E). For example, consider that the trait hierar-
chy of Figure 2b is extended through addition of a trait
FloatOpNeed. FloatOpNeed requires the presence of an
integer property ‘“num flops” and does not refine any trait
previously present in Figure 2b. If actor A additionally
declares the trait FloatOpNeed and has a property “num
flops” of 7, actor A becomes part of two loosely related
views shown in Figure 3: the flops requirements view (Figure
3a) and the SDF view (Figure 3c).

actor A: SDFActor,
extra::FloatOpNeed

Func.

Req.

production = {0 = 2}
consumption = {} 2
num flops = 7

actor A 7

port: o

(a) Flops req. view (b) Vertex being viewed (c) SDF view

Fig. 3: A vertex being viewed in two different views.

To express these concepts in line with Section III-B, we
define vertex trait viewers. A vertex trait viewer is a tuple
w(t) = (Dr(t),N(t)), where Dr(t) is the vertex required
properties of ¢ as in Section III-B and A/ (¢) is the set of
vertex view navigation of t. Specifically, N(t) returns a set
of functions F(G,v) that returns other vertex viewers of
vertices connected to vertex v in the system graph G. Each
function F' in A (t) follows directly from each required port
in Pr(t), and thus, returns the other viewers with correct
ordering, multiplicity and orientation. Therefore, a viewer w(t)
navigates a system graph G as if G is exactly the graphical
structure defined by w(t). For example, w(SDFChannel),
derived from Figure 2b, has two functions F(G,v); one for
the producer of v in G as a SDFActor viewer; and another
for the consumer of v in G as a SDFActor viewer.

D. Composition and merging of system graphs

The composition of system graphs produces a new system
graph with their combined information. The split-view exam-
ple of Figure 3 can also be understood as the composition of
two system graphs having a vertex with the same identifier,
e.g. actor A which is shown in Figure 4. This interpretation
also demonstrates how composition is possible across different
views. The composition of system graphs is defined through
the merge operation (@), as described in the following para-
graphs.

The merge operation (@) merges the vertices and edges of
two system graphs based on vertex identifiers. While merging
properties of two vertices, there might be clashing information
that cannot be solved trivially, e.g. two different literals that
occupy the same nested position. Thus, we introduce the value
reject as a possible result of (@) to symbolize such non-
trivial cases. If the merge results in any reject recursively,
the merge is rejected.

For the sake of simplicity, let d(s) return the value of
dictionary d for the key s and a sequence [ be denoted by
[l1,12,...]. Equations (1) to (5) define (@) for all system
graph definitions of Section III-A, save for vertex properties,

actor A: SDFActor

production = {0 = 2}
consumption = {}

|

: actor A:

I extra::FloatOpNeed
|
|

‘ num flops = 7 ‘

port: o

————————————— Merge (B) -------------

!
actor A: SDFActor, extra::FloatOpNeed

production = {0 = 2}, consumption = {}, num flops = 7

port: o

Fig. 4: Example composition across aspects through merging.

which is computed (and implicitly defined) by Algorithm 1.
The ellipsis in Equation (5) is used as short hand for equality
of the edge tuple elements minus its traits.

GoG =(VaV EQE) (1)
VoV ={vevjveV,v eV, n, =ny}
U {’U S V| /EU/ S V/, Ny = n'u’} (2)

U eV’ BveV,n, =ny}
EGFE ={e®c|se=5c,...,p, = P}
U{e€ E|Be € E';sc = ser,.. o tp, =t} (3)
U{e' € E'|Be € E 80 = 8¢r,...,1p, = tp}
v @V = (54, Py UPy,Dy ® Dy, T, UT,) )
e®e = (Serte, SPestpe, Te UTer) ®)

Algorithm 1 d © d’ computation

1: d®d + reject

2: if d,d’ are literals (S, R or B) and d = d’ then

3: dod +d

4: else if d, d’ are dictionaries of equal key data type (S or Z) then
5: (d® d') + empty sequence

6: for key s of either dictionary d or d’ (union of keys) do
7: if s is a key of both dictionaries (intersection) then
8: (dod)(s) « d(s) ®d(s)

9: else if s is a key of d only then

10: (ded)(s) « d(s)

11: else if s is a key of d’ only then

12: (dod)(s) « d(s)

13: else if d,d’ are sequences of size m and n with m > n then
14: dod«—dod

15: else if d,d’ are sequences of size m and n with m < n then
16: dod « [ded,....dn®d,drsi,. .., d]

17: if d @ d’ = reject then

18: abort with merge error of d and d’

19: return d @ d’

We remark that only D, & D, might result in reject, since
Equations (4) and (5) are only applied to cases when n, = n,,
i.e. associative cases. Thus, Algorithm 1 aborts in three cases:
if any subdictionary or sequence is rejected (lines 4 and 15),
if the properties have different types (lines 2, 4 and 15) or if
two literals have different values (line 3).

Therefore, we derive an important practical property of the



merge operation: G & G’ is not rejected if all vertex property
“leaf” literals are equal where they clash.

E. Tool integration

As outlined in Section III-D, system graphs can system-
atically be incremented with information without losses. This
increment happens in two ways; first, by composing the current
system graph with another; second, by refining the traits of a
vertex or an edge. A refinement of trait still imposes at least
the same requirements on the vertex or edge as the non-refined
trait does. Consequently, the views of the refined system graph
within a tool remain the same as they were before refinement;
in turn, the tool integration is safely maintained.

For example, consider the two system graphs in Figure 5
and assume that MappedSDFActor refines SDFActor.
MappedSDFActor requires a “responseTime” float property
and a “mapHost” port to a platform: :CPU via an edge
declaring a dse: :Mapping trait. The system graph in Fig-
ure 5b is the result of submitting the system graph in Figure 5a
to a mapping and scheduling procedure for SDF applications
in a multicore architecture, e.g. the DSE of [16]. An SDF
simulator tool can simply ignore the added DSE information,
since actor A is still a SDFActor through the refined
MappedSDFActor trait.

cpul: platform::CPU
freq = 50 MHz

cpul: platform::CPU
freq = 50 MHz

dse::Mapping

port mapHost

actor A: MappedSDFActor,
dse::Mapped

actor A: SDFActor,
extra::FloatOpNeed

production = {0 = 2}
consumption = {}

num flops =7
responseTime = 0.001 s

production = {0 = 2}
consumption = {}
num flops = 7

port: o port: o, port: mapHost

(a) System graph before DSE (b) System graph after DSE

Fig. 5: Example of lossless information gain.

Tools that modify the system graph in a graph rewriting
sense [17] can also be made lossless through appropriate
trait definitions. For example, consider the transformation
from SDFs to job graphs of [18], commonly performed for
SDF synthesis. To express this transformation, we define a
trait JobFromSDF with a port “actor” to a SDFActor. In
Figure 2a, actor A executes three times in order to maintain
memory bounded [18], so there will be three jobs created
after this transformation, as shown in Figure 6. Then, the
aforementioned SDF simulator tool can use the incremented
system graph and produce the same results observed before
the transformation.

FE. External connections

The connection between our framework and others can be
achieved by model-to-model (M2M) transformations in the
sense of meta-modeling-based frameworks. These connections
are implemented by using the supporting libraries available

actor A Job 1: actor A Job 2: actor A Job 3:

JobFromSDF ‘ ‘ JobFromSDF ‘ ‘ JobFromSDF
\ port: actor \ \port: actor \ \port: actor \

port port port
actor actor actor
actor A: SDFActor, Sink

production = {o = 2}, consumption = {}

port: o

Fig. 6: Example of lossless system graph increment

for the implementation language of the other framework. For
instance, to connect the SDF example of Figure 2 to the
AMALTHEA framework, the connector would use the Java
supporting library (Section IV) and the SDF trait hierarchy to
produce Task graphs from both SDF actors and channels in
system graphs.

IV. IMPLEMENTATION

An implementation of our proposed framework, i.e. com-
plying to Section III, is a supporting library. Supporting
libraries have a major goal: to guarantee that any tool based
on our framework respects the definitions and consistencies
of Section III across different programming languages. This
relieves designers and tool vendors of the effort to guarantee
such definitions and consistencies by themselves.

Each supporting library has three components to coincide
conceptually with Section III and maximize the exploitation
of the relevant work of other communities (Figure 7).

External

frameworks
libraries

Graphing library

. on language ©
Language 4

Repositories

Support library publishing

Supporting Library @ Language ¢

Optional external connectors:
transformations to other frameworks

Trait hiearchy and viewer:
typed analysis and manipulation

System graph: Py
analysis, manipulation, parsing and dumping

N Trait hierarchy description

Code Generation

Fig. 7: Schematic representation of a supporting library.

The system graph component handles the in-memory rep-
resentation and merging of system graphs as discussed in
Sections III-A and III-D, as well as storing and restoring
them from disk. It is also in this layer that merging and
minimal consistency checks are implemented, raising errors
whenever appropriate. If a graphing library is available, e.g.
JGraphT [19] for the Java supporting library, then the system
graph component represents system graphs in-memory through
the graphing library’s data structures. In all cases, the develop-
ment of the system graph component is a one-time engineering



effort for each supported language, where the effort is the
implementation of system graph data structures, e.g. vertices.

The trait hierarchy and viewer component contains the
trait hierarchy, its viewers and the trait consistency validation
discussed in Sections III-B and III-C. The trait viewers provide
abstraction mechanisms for idiomatic access and manipulation
of the system graph in the implementation programming
language. For example, the trait viewers in the Java supporting
library are classes with getter and setter methods that wrap the
vertex being viewed. The java data types for these methods are
derived from the Pr and Dr functions of Section III-B. If a
trait is opaque, i.e. not in the bundled trait hierarchy, then there
are no abstraction mechanisms, but the vertex information
is maintained. Like the system graph component, the trait
hierarchy and viewer component is a one-time development
effort through automatic code generation: the component code
is automatically generated from a trait hierarchy description.

The third and optional external connectors component
contains external connectors to other MDE frameworks as
discussed in Section III-F. It is not mandatory for these
conversions to be a one-to-one mapping. For example, in the
current Java supporting library, only a subset of AMALTHEA
models is converted one-to-one.

The published supporting library does not need to have all
external connectors bundled. In the Java supporting library,
for instance, the system graph and trait hierarchy components
are published as forsyde—io—-java-core to Maven Cen-
tral; on the other hand, the AMALTHEA external connector
is published as forsyde—-io-java—-amalthea to Maven
central and builds over forsyde—-io-java—-core.

A. Description languages

Supporting libraries can persist system graphs and trait
hierarchies on disk in any format, but at least two human-
readable formats are supported: a domain specific language
(DSL) for system graphs and another DSL for trait hierarchies.

For the sake of brevity, we describe the DSLs with List-
ings 1 and 2 as examples, and argue that they contain all
syntactical elements required to infer their formal context-free
grammars. Their full ANTLR EBNF grammars can be found

in the implementation repositories'.

vertex actor_A [SDFActor] (o) {

1
2 "production": {"o": 2_i},

3 "consumption": {},

4 "num flops": 7_i

s}

6

7 vertex channel_A_to_B [SDFChannel]

8 (producer, consumer) {"initialTokens": 0_i}

10 edge [DataEdge] from actor_A port o to
channel_A_to_B port producer

Listing 1: System graph description excerpt of Figure 2a.

1) System graphs: The system graph DSL represents data
in a flat structure as shown in example system graph of
Listing 1. vertices (Lines 1 and 7) are declared with their

Thttps://github.com/forsyde/forsyde-io

namespace execution {
vertex Stimulus

vertex PeriodicTask refines Task {

1
3
4
5 port periodicStimulus is single in Stimulus
6
7
8

}

10 namespace platform {

12 vertex DigitalModule refines PlatformElem {
13 prop operatingFrequencyInHertz is long

16 vertex GenericProcessingModule refines
platform :: DigitalModule

17

18 namespace runtime {

19

20 vertex FixedPriorityScheduler refines
AbstractScheduler {

21 prop preemptive is boolean

22

23

2 }

25 }

Listing 2: Excerpt of the case study trait hierarchy description

traits (inside square brackets, Lines 1 and 7), their ports (inside
parenthesis, Lines 1 and 7), and their properties (inside curly
brackets, Lines 1-5 and 8). Edges are declared similarly, but
with their ports declaration being optional (e.g. no port for
target on Line 14). The vertex properties are declared in a
JSON-like syntax, with two major differences: integers have
optional suffixes that indicate if they are plain integers or long
integers (e.g. Lines 2, 4 and 8), and strings can be written
spanning multiple lines (not shown in Listing 1 or 2). We
remark that there is no inherent separation in the description
file as a result of the definitions of Section III.

2) Trait hierarchy: The trait hierarchy DSL is inspired by
the object-oriented paradigm in that the vertices and edges dec-
larations resemble class declarations, organized within names-
paces. An example that expresses the domain of Section V is
shown in Listing 2.

The separation convention between vertices and edges is
enforced by the declaration keywords vertex and edge. The
properties (e.g. Lines 13 and 21) and ports (e.g. Line 5) are
directly translated to Pr and Dr. These, in turn, are directly
translated to vertex trait viewers (Sections III-B and III-C).

The refinement identifiers (e.g. Line 4) can be declared both
in absolute or relative forms. An absolute declaration contains
“:2” in the identifier (e.g. Line 16). The absolute form is the
trait actual name in the trait hierarchy, as traits declared in the
relative form are translated into their absolute forms during the
parsing step of the DSL. For example, Stimulus in Line 2
is translated to execution: :Stimulus.

B. Consistency validation and rejection

The DSLs give the supporting library the possibility of
reporting consistencies of the description in an human-
understandable format. These errors can be DSL syntax errors
or failing to assert minimal consistencies. For example, if
we change the source of edge in line 14 at Listing 1 to



acrto_A (note the incorrect spelling), the Java supporting
library will throw the error: “edge at 14:0 declares
source ’'acrto_A’ that does not exist”.

Likewise, the trait hierarchy DSL rejects a trait hierarchy
declaration and reports the error whenever a trait hierarchy
cannot be built from the declaration. This occurs when trait
declarations refine other traits that are not declared in the
hierarchy. For example, if we change PeriodicTask
to refine Taska instead of Task, the java supporting
library will throw the following message: “vertex trait
"execution::PeriodicTask’ declared at 13:4
refines ’'execution::Taska’ which does not
exist in the hierarchy”.

The goal of these mechanisms is to block tools that use
supporting library from consuming inconsistent models cre-
ated without a supporting library; for example, models created
manually. In addition, these mechamisms can be used to cross-
check if supporting libraries do not produce invalid models.

V. ILLUSTRATIVE CASE STUDY

The industrial avionics case study that we perform is a
safety-critical design scenario where different applications
share the same platform. The objective is to find a mapping
between the applications and the platform that guarantees that
the design requirements are met, based on performance data.

To showcase how our framework fits this case study through
an MDE approach, we develop a trait hierarchy that expresses
the domain-specific information of the case study for auto-
mated DSE and external connectors, and four system graphs
complying to this trait hierarchy (Figure 8).

The full case study details, along the system graphs and
trait hierarchies produced are omitted for brevity but can be
found in the implementation? and case study® repositories.

A. Applications, platform and constraints overview

The two applications are described as task graphs, A; and
Ag, where the tasks represent code that must be executed.
These tasks are activated periodically, with deadlines to be
satisfied; might have precedence constraints between each
other; and might communicate. The platform P is given as
a connected graph of communication, processing, storage and
I/0 elements. Each processing unit executes its mapped tasks
according to a fixed-priory preemptive policy. Moreover, the
worst-case execution time (WCET) of executing a task in a
processing unit is known; and the constraint C' is that no
processing element has utilization higher than 50%.

B. Case study trait hierarchy

We create a trait hierarchy 7 with a namespace for each
view involved in Section V-A: a namespace execution for the
applications; namespaces platform and its nested runtime for
hardware and runtime software elements of the platform; a
namespace requirements for the constraints; and a namespace
decision to have the mapping and scheduling decisions. The
last namespace emphasizes that the decisions regarding map-
ping and scheduling are part of this design process, and have

Zhttps://github.com/forsyde/forsyde-io
3https://github.com/forsyde/panorama-kth-demonstrator

Flllr;gfg ﬁ;?;‘:n Radar detection AI\]/)I{\I}THEA
atform
AMALTHEA | |AMALTHEA task graph (P')
, graph (4})
task graph (A})

| l

| | {  AMALTHEA connector built over 7 | |

v v v

; Flight funﬁion Radar detection Platform graph
information system | |system graph (Ay) (P)

graph (A1) ]
—— ,
H Merge operation (©) H(—{ Requiements ‘

Graph (C)
DSE built over 7~

Unmapped system graph S
A1®A, 8P 0C)

‘ | Merge operation (@) | Mapping m
Mapped system graph S* Legend
(AhodoPeCom) [] Process input model
J [] Process output model
AMALTHEA connector [ Process automatic

built over T~ tool-generated model
v [ Framework-based
internal tool
AMALTHEJI} [[] Framework-based
model of S external tool

Fig. 8: Case study MDE process overview diagram

well-defined properties and relations to elements in the system
graph. These declarations can be seen partially in the trait
hierarchy of Listing 2. We remark that these declaration can
co-exist with the ones in Figure 2b, to emphasize the multi-
view extensibility of our framework.

C. Independent system graphs

Given the trait hierarchy 7 produced in Section V-B,
we develop four models: one AMALTHEA model for each
application (A} and Af), one AMALTHEA model for the
platform P’ (expressing both hardware and runtime software)
and one system graph for the constraints C'. The motivation
to develop the system graphs after 7 is to ensure they are
conforming to 7. The AMALTHEA models A}, A} and P’
are converted independently to system graphs A;, A, and P
through the AMALTHEA connector, described in Section V-E.

The four system graphs represent different design teams
working in parallel without full knowledge of each other, aside
from the identifiers of common elements. This is evident be-
tween P and C': the merge results are coherent if the identifiers
between P and C’s processing units match. This matching is
equivalent to the design teams agreeing on common names for
the system’s processing elements.

D. Design space exploration

The merged unmapped system graph S = A1 AsPPEC is
fed to a DSE tool that performs scheduling and mapping for .S
(DSE built over T in Figure 8). The DSE tool uses constraint
satisfaction programming (CSP) and partitioned scheduling



equations in order to find a feasible solution where all the tasks
meet their deadlines even when sharing the same processing
element. In this work, we use the formulations in Forget et
al. [20] and Khalilzad et al. [21], and defer the development
of a customized DSE tool to future work. The current DSE
tool is built using the Java supporting library (itself built
over 7)) and returns a system graph with mapping edges (m)
between application and platform vertices once a mapping is
found. These edges have traits decision: :Mapping or
decision::Allocation and are merged back with S to
obtain the result of the DSE, ST =S & m.

E. Connecting the results to AMALTHEA

In order to improve the reachability of the results of the
case study design process, we choose AMALTHEA [5] as
an secondary input and output model due to its maturity and
presence in the automotive community. Consequently, we de-
velop a connector between our framework and AMALTHEA,
by using the freely available AMALTHEA modelling libraries.

The conversion algorithm, and its implementation, was
tested for correctness by converting S and St to AMALTHEA
and back to system graphs, then checking for conversion
and DSE inconsistencies. The full code can be found in the
implementation repository*.

VI. CONCLUSION

We present a novel model-driven engineering (MDE) frame-
work based on a common model formalized by system graphs
and trait hierarchies. Our framework’s novel concepts can
be implemented as a one-time-engineering effort for each
language, enabling a language-agnostic integration of tools
within our framework.

We evaluate our framework through an industrial avionics
MDE case study. Our framework successfully performs four
activities in the MDE case study as representatives of an
MDE process: modelling of separate parts of the system,
integration of these parts, integration of an external automated
Design Space Exploration (DSE) tool and publication of
results to another framework (AMALTHEA). These activities
are performed with a Java supporting library that is developed
as a one-time-engineering effort and is publicly available. We
conclude that our framework constitutes a solid foundation to
integrate MDE tools and exploit their state-of-the-art, includ-
ing tools from different MDE frameworks.

A future direction for our approach is the automatic gen-
eration of external connectors for other MDE frameworks.
Currently, developing external connectors is a manual one-
time-engineering effort.
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