
From IEC 61131-3 Function Block Diagrams to
Sequentially Constructive Statecharts

Marcel Christian Werner
University of Kaiserslautern

Kaiserslautern, Germany
marcel.christian.werner@gmail.com

Klaus Schneider
University of Kaiserslautern

Kaiserslautern, Germany
schneider@cs.uni-kl.de

Abstract—Function Block Diagrams (FBDs) are widely used
for implementing the software of IEC 61131-3 based systems. In
general, there is a risk that FBDs used in industry will become
more and more complex during their life cycle, while at the same
time strict specifications have to be met. On the other hand, a
trend towards model-based design with standardized modeling
tools can be observed in software engineering. While previous
research focuses on translating existing FBDs to formal models
for verification purposes, this paper presents two translations
from existing FBDs to sequentially constructive statecharts, thus
enabling an intuitive functional reuse for a model-based design.
Besides a basic translation in the first approach, it is shown in
the second approach that it is possible to improve the readability
through code refactoring within the synchronous paradigm.

Index Terms—model-driven development, programmable logic
devices, software reusability, synchronous languages, system anal-
ysis and design

I. INTRODUCTION

The third part of the IEC 61131 standard [1] considers the de-
velopment of software for industrial real-time systems such as
Programmable Logic Controllers (PLCs). A language widely
used in the field of IEC 61131-3 based PLCs are graphical
Function Block Diagrams (FBDs) where the elements such as
function blocks or variables are connected with graphical lines
following a data-flow notation.

Furthermore, over the last two decades, methods have been
investigated to enhance software development of IEC 61131-
3 based systems using modelling techniques such as the
Unified Modeling Language1 (UML) [2]. This trend is re-
flected in isolated PLC vendors2 and engineering tools such
as Simulink3 [3]. For new projects, a model-based design,
e.g., using UML should be used, while for existing plants
already using IEC 61131-3 systems, a translation to languages
used by model-based designs becomes desirable for at least
two reasons: First, the software part of existing plants grows
during their life cycle and can become chaotic and complex
when it exceeds a certain limit. Second, a further aspect
is the need for producing models for a formal verification.

1https://www.omg.org/spec/UML/2.5.1
2https://store.codesys.com/codesys-uml.html
3https://de.mathworks.com/products/simulink.html

Related approaches using synchronous languages [4] follow
the idea of a functional reuse similar to a model-based design
in software engineering. Picking up the idea of a possible reuse
of existing IEC 61131-3 software, this work is motivated by
the opportunity to improve the readability of existing FBDs.

This paper presents two translations from IEC 61131-3
FBDs to Sequentially Constructive Statecharts (SCCharts) [5],
a direct one and another one via the synchronous language
Quartz [6]. In addition to the translation from FBDs to SCCha-
rts in the first approach, the second one is based on refactoring
the code for imperative Quartz models, which is intended to
improve the readability. Both translation approaches lead to
a textual description of the SCCharts, from which different
graphical representations can be generated.

The outline of the paper is as follows: After introducing
the different software models in Section II, a translation from
FBD to SCChart is explained in Section III. In Section IV,
a translation from FBD to Quartz and a code refactoring is
introduced, and in Section V, a translation from Quartz to
SCChart is described. Related work is discussed in Section VI.

II. BACKGROUND

This section introduces the different software models illus-
trated in Fig. 1 using the example of a generic on-delay timer
of an input IN. Fig. 1(a) shows a typical graphical IEC 61131-
3 FBD, Fig. 1(b) a simple Quartz model without declaration
section, and Fig. 1(c) a view as graphical data-flow-oriented
SCChart, that was automatically generated based on a textual
description.

A. The IEC 61131-3 Function Block Diagram

In general, the IEC 61131-3 software model [1] consists of var-
ious configuration and language elements. In this approach, we
consider cyclically controlled software units, called Program
Organization Units (POUs). In this model of computation,
cyclically, first a so-called process image of the inputs is
created, then the logic is executed, and finally the process
image of the outputs is updated [7]. In this paper, we are
mainly focusing on the modeling of the logic which is why
the process images of the physical IEC 61131-3 system are
neglected. The language elements in FBDs are represented
as shown in Fig. 1(a), which are connected by graphical978-1-6654-7332-3/22/$31.00 ©2022 IEEE

(a) IEC 61131-3 FBD (manually implemented) (b) Quartz Model (manually implemented) (c) Data-flow-oriented SCChart (automatically
generated view)

Fig. 1. Different software models for a generic on-delay timer

signal lines. Typically, not only variables are connected to each
other by lines, but also the ports of graphical function blocks
[1]. The function blocks can be user-implemented POUs or
function blocks included via libraries. The execution of the
function blocks is sequential and is identified with a number
in the blocks by some PLC manufacturers.

B. The Synchronous Software Model

Synchronous languages are based on the general principle of
perfect synchrony [6]. This means that a program can typically
be divided into so-called reaction or macro steps which define
different logical points of time in the program. Synchronous
languages are becoming more and more attractive for the
design and verification of reactive real-time systems and can
be generally divided into imperative, data-flow, and graphical
languages [6], [8], [9]. This approach focuses on the impera-
tive language Quartz and the graphical language SCCharts.

1) Quartz and Averest: Averest4 is a framework for the
specification, verification and implementation of reactive sys-
tems. It expects the system to be described as a program
in the textual language Quartz [6] as shown in Fig. 1(b).
Quartz is derived from Esterel [10] and comes with typical
statements for imperative languages like assignments, selection
or bounded loops. Furthermore, Quartz allows the imple-
mentation of synchronous and asynchronous concurrency of
threads, the explicit modeling of non-determinism and delayed
assignments, among other things. Consumption of time must
be explicitly programmed with special statements. An example
for this is the pause statement. When the Quartz program is
executed, the control flow stops at the pause statement and
is resumed at this point in the next macro step, provided there
is no surrounding suspension or abortion.

2) Sequentially Constructive Charts and the KIELER
Framework: KIELER5 is an open-source framework as part
of a research project to improve graphical model-based design
of complex systems. This framework can be used to generate
graphical SCCharts, among other things. SCCharts was ini-
tially introduced for the specification of safety-critical reactive

4http://www.averest.org/
5https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

systems [5]. In addition to various visualization options, we
will focus in the following on data-flow-oriented SCChart
models and state-oriented SCChart models where the respec-
tive graphical representation is based on textual descriptions.

III. FROM IEC 61131-3 FBDS TO SCCHARTS

This section describes the first approach introduced in this
paper to translate existing IEC 61131-3 FBDs to SCCharts,
whose idea is shown in Fig. 2. In order to translate FBDs to
SCCharts automatically, they are first translated to suitable
equivalent textual IEC 61131-3 Structured Text (ST) mod-
els [1], [11], assuming that no explicit function execution
control is used within the FBDs, which would be realized
via additional Boolean inputs at the used function blocks
[7]. Some PLC development environments such as Beremiz6

support auto-translation from FBD to ST.
However, it must be considered that the backward transla-

tion strategy [12] is followed. This algorithm starts from the
last executed function block of an output to the first executed
function block since FBDs typically consist of a series of
function blocks that are connected sequentially, hierarchically,
and compositionally [12]. Accordingly, for each output of a
given FBD such as the FBD of the generic on-delay timer,
the sequential execution of all affected function blocks is
expressed as an equation. Due to the fact that the graphical
function blocks can be interpreted as block calls, this results
in a representation as ST model which also uses the operators
as function block calls. For both variables, T_NEW and T,
given in the FBD in Fig. 1(a), this results in the two shown
equations within the IEC 61131-3 paradigm. In comparison
to the backward strategy, the forward translation strategy [12]
starts from the first executed function block and the results
are stored in additional temporary variables which are used as
inputs in subsequent statements. This would prevent a nesting
of multiple function blocks, but leads to the fact that for each
graphical data-flow signal line an additional variable is needed
which can have a negative impact on the readability depending
on the generated view. Independent of the chosen translation
strategy, the sequentially constructive model of computation

6https://beremiz.org/doc

Fig. 2. Workflow to translate existing FBDs to SCCharts

of SCCharts has to be considered. A good example of this is
given by the two variables T and T_NEW in Fig. 2. Since the
assignment to T is sequential after the assignment to T_NEW,
a pre(T) statement is omitted in the assignment to T_NEW.

The difference in the subsequent representation is shown
in Fig. 3. Fig. 3(a) and Fig. 3(b) show graphical SCCharts
automatically generated by the KIELER framework as a result
of a backward translation strategy and Fig. 3(c) and Fig. 3(d)
show SCCharts as a result of a forward translation strategy. In
both state-oriented SCCharts, only one variable is shown, but
the relationship between the textual description in Fig. 2 and
the transition is obvious.

There are two approaches for further translation of the re-
sulting IEC 61131-3 ST model into the synchronous paradigm
using KIELER: (1) The used function blocks are supported
as operators or (2) are defined in a separate SCChart and
instantiated in this place. We assume that the operators are
supported by KIELER and focus on the first approach. Inline
refactoring can then be used to generate the textual SCChart
description as illustrated in Fig. 2 by the variables T and
T_NEW, and thus generate the graphical data-flow-oriented
SCChart introduced in Fig. 1(c).

A. Readability of FBD-based SCChart

Overall, it can be stated that this translation can be used to
generate graphical data-flow-oriented SCCharts which have
almost the same complexity as the underlying IEC 61131-3
FBDs which is confirmed by the graphical models in Fig. 1(a)
and Fig. 3(a). Only delayed assignments, i.e., those that are
only to be valid in the following cycle, must be handled
specially due to the synchronous paradigm. In our opinion, the
possible representation as equivalent state-oriented SCChart

(a) Data-flow-oriented SCChart (backward
translation)

(b) State-oriented
SCChart (backward
translation)

(c) Data-flow-oriented SCChart (forward
translation)

(d) State-oriented
SCChart (forward
translation)

Fig. 3. Impact of the translation strategy on the resulting graphical SCCharts
related to the translation from FBD to ST

can significantly degrade the readability in case it is intended
to be reused as a graphical model for software engineering
purposes, since the nesting of the function blocks is directly
reflected in the transitions. For complex algorithms, we expect
that the logic can be difficult to understand. For instance,
comparing the equations for both variables, T and T_NEW, it is
obvious that the transitions have the same level of complexity
as the equations and therefore the same depth of nesting.

B. Correctness of the FBD-to-SCChart Translation

The correctness of the translation can be evaluated by showing
that the I/O behavior of both models, the original IEC 61131-3
FBD and the resulting SCChart, is the same.

Conjecture 1. The resulting SCChart always shows the same
I/O behavior as the underlying IEC 61131-3 FBD, if the logic
was translated via a backward translation to an equivalent ST
model and then to SCChart, assuming that all operators are
supported by the KIELER framework.

Both models, the IEC 61131-3 FBD and SCChart, con-
tain the same interface. The I/O behavior is tested for the
IEC 61131-3 standard function blocks [1] SR, RS, R_TRIG,
F_TRIG, CTU, CTD, CTUD, TON, TOF, and TP. In this
context, the TIME() function used in the standard function
blocks is replaced as shown in the presented generic on-
delay timer in Fig. 1 by a generic cycle-dependent counter.
In addition, based on the listed standard function blocks, 10
different applications are tested to check the applicability to
more complicated algorithms. The I/O behavior is compared

via simulation inside the KIELER framework and IEC 61131-
3 development environment. This does not represent a general
proof of the correctness, but it confirms the applicability for
algorithms limited to the supported KIELER operators.

IV. FROM IEC 61131-3 FBDS TO QUARTZ MODELS

Picking up on the first step in the translation from FBDs to ST
models in Fig. 2, the following two sections describe a sec-
ond approach to translate existing FBDs to SCCharts, where
this section focuses on translating FBDs to Quartz. Fig. 4
illustrates how a possible subsequent translation to Quartz
models can be realized: In a first step, a code refactoring of
the ST model is performed to get a ST model that contains
core operators typical for imperative languages. This step is
trivial and does not require further details at this point. In a
second step, the resulted ST model is translated to Quartz,
considering the synchronous paradigm as illustrated with the
delayed assignment to T using the next operator and the
additional pause statement.

Fig. 4. Workflow to translate existing FBDs to Quartz models

To improve the readability of the final SCChart, additional
Quartz code refactoring is performed within the synchronous
paradigm. The basic strategy is illustrated in Fig. 5(a). The
if-else condition is replaced by a immediate abort
statement taking into account possible immediate statements
before and after, i.e., in aborted and not aborted branches. In
both scenarios, loop S iterations are executed of which the
inner one can be replaced by a halt statement depending
on the time dependency of the included statements. Nesting
of multiple if-else conditions is common in many ap-
plications which is why Fig. 5(b) illustrates the case where
the else branch contains another condition. This results in
a hierarchy of immediate abort statements. The hier-
archy follows the sequential execution order of the original
if-else condition. This means that the last else branch
represents the innermost iteration and the first if condition
the outermost iteration. In this case, it is also possible to
replace one of the inner loop S iterations with a halt
statement, where in addition to the time-independence of the
statements, it must be considered that this means that it is
no longer possible to switch to an inner iteration and can
only be terminated by a surrounding abort environment. In
contrast, nesting inside the if branch cannot be replaced in

the same way, because the inner if-else condition would
have a higher priority in the evaluation. This would change the
semantics. In such cases, the logic of the Boolean condition
must be inverted accordingly to move the statements to the
else branch which is shown in Fig. 5(c).

(a) Code refactoring of condition statement

(b) Code refactoring of nested condition statement within else branch

(c) Code refactoring of nested condition statement within if branch

Fig. 5. Quartz code refactoring approach

A. Correctness of the Quartz Code Refactoring

The correctness of the code refactoring can be evaluated by
showing that the I/O behavior of both models, the original
Quartz model and the refactored Quartz model, is the same.

Conjecture 2. The if-else condition can be refactored
by a immediate abort statement, considering possible
immediate statements before and after it.

Both Quartz models, before and after code refactoring,
contain at least one statement in the respective if and else
branch which is verified by forcing the Boolean condition
accordingly at simulation time within the Averest framework
and checking the state transitions. For all three demonstrated
scenarios, the correctness of the respective code refactoring
approach is validated. It is obvious that the approach may
only be applied as long as the conditions are independent of
S0, because otherwise potential causality errors may result.

V. FROM QUARTZ MODELS TO SCCHARTS

Following an approach to synthesizing safe state machines
from Esterel [13], we define a set of transformation rules for
existing Quartz statements to allow synthesizing SCCharts. We
limit the definition of the rules to a subset of the Quartz core
statements [6] and then apply them to translate the generic
on-delay timer application.

1) Transformation Rule 1 (nothing): The dashed arrow
in Fig. 6 represents an immediate transition from state
S1 to S2 and is checked as soon as S1 is entered. An
immediate transition can lead to situations where the
parent state is entered and left in the same tick as in
this case, since the nothing statement neither changes
variables nor stops the control flow and terminates
immediately [6].

Fig. 6. SCChart of Quartz sequence {S1; nothing; S2;}

2) Transformation Rule 2 (await(a)): The solid arrow in
Fig. 7 represents a transition from state S1 to S2 that
becomes active in the next tick after its parent state S1
has been entered. The await(a) instruction depends
on a Boolean condition to terminate [6]. That means the
statement waits at S1 until the Boolean condition a is
true, and then terminates.

Fig. 7. SCChart of Quartz sequence {S1; await(a); S2;}

3) Transformation Rule 3 (pause): The execution of a
pause statement consumes one logical unit of time and
leads to a stop of the control flow and current macro
step. In the next macro step, the control is resumed from
this point. Therefore, the pause is never instantaneous
and it follows, among other things, that it behaves
equivalently to await(true) [6]. Fig. 8 illustrates
both equivalent representations.

4) Transformation Rule 4 (sequence): A sequence, as
illustrated in Fig. 9, is a sequential execution of dif-
ferent statements after termination. Switching between
statements does not consume time. If the individual
statements terminate instantaneously, the sequence also
terminates instantaneously [6]. The change of sequences
containing other sequences, such as S2, is indicated by
the green triangle.

5) Transformation Rule 5 (synchronous concurrency):
The application of synchronous concurrency of different

Fig. 8. SCChart of Quartz sequences {S1; await(true); S2;} and {S1; pause;
S2;}

Fig. 9. SCChart of Quartz sequence {S1; S2; ... Sn;}

statements illustrated in Fig. 10 is a common use case
for synchronous languages. At the macro steps, the
parallel instructions are synchronized and can interact.
Any abort statements affect all parallel statements and
the statements terminate as soon as the last of the parallel
statements terminates [6].

Fig. 10. SCChart of Quartz sequence {S1; ∥ S2; ∥ ... ∥ Sn;}

6) Transformation Rule 6 (do S while(a)): The
do S while(a) statement represents an iteration and
is executed as illustrated in Fig. 11. A statement S1
is executed and the Boolean condition a is ignored.
After S1 has been terminated, the Boolean condition
a is checked. If a is true, then do S1 while(a) is
executed again. Otherwise, the iteration terminates [6].

Fig. 11. SCChart of Quartz sequence {do S1; while(a); S2;}

7) Transformation Rule 7 (loop S): The loop S state-
ment is a special case of the do S while(a) iteration

statement, illustrated in Fig. 12. More precisely, it is
an infinite loop for which we can assume that the
termination condition is never true [6].

Fig. 12. SCChart of Quartz sequences {do S; while(true);} and {loop S;}

8) Transformation Rule 8 (halt): As illustrated in Fig. 13,
the halt statement represents an infinite loop executing
a pause statement. This means that the halt statement
never terminates [6].

Fig. 13. SCChart of Quartz sequences {loop pause;} and {halt;}

9) Transformation Rule 9 (immediate assignment): The
immediate assignment a = b, as illustrated in Fig. 14,
instantaneously modifies the value of a so that a has the
same value as b [6].

Fig. 14. SCChart of Quartz sequence {S1; a=b; S2;}

10) Transformation Rule 10 (delayed assignment): The
delayed assignment is executed instantaneously, after a
delay of one logical instant. This is illustrated in Fig. 15.

In the upper use case, a is instantaneously set to 1 and
in the next macro step, b is set to 1, although a is set
to 2 in the same macro step. In contrast, the statement
halt does not terminate in the lower use case, so the
immediate assignment a = 2 is unreachable, but b is
set to 1 [6].

Fig. 15. SCChart of Quartz sequences {S1; a=1; next(b)=a; pause; a=2; S2;}
and {S1; a=1; next(b)=a; halt; a=2; S2;}

11) Transformation Rule 11 (abort S when(a)): The
abort S when(a) statement in Fig. 16 evaluates a
in each macro step while S is running. In case a is true,
then the execution of S will be aborted. Otherwise, the
execution of S will not be disturbed [6].

Fig. 16. SCChart of Quartz sequence {abort S1; when(a); S2;}

12) Transformation Rule 12 (immediate abort S
when(a)): The immediate abort S when(a)
statement, in contrast to the abort S when(a)
statement, already checks the condition before S is
running, i.e., any immediate statements in this macro
step are not executed [6]. As illustrated in Fig. 17, the
representation is very similar considering the semantics
of dashed and solid transitions explained in the previous
transformation rules.

Fig. 17. SCChart of Quartz sequence {immediate abort S1; when(a); S2;}

Thus, all transformation rules are defined to represent the
generic on-delay Quartz model in Fig. 18(a) as SCChart in
Fig. 18(b). This may lead to unnecessary hierarchical states
which can be eliminated by applying general optimization

strategies [13]. In addition, instantaneous transitions can be
combined, redundant actions such as Q = false can be
eliminated, and, taking into account any side effects, auxiliary
variables such as T_NEW may be resolved. In this example,
this leads to the optimized SCChart in Fig. 18(c).

(a) Quartz Model (b) Applied transformation
rules

(c) Optimized SCChart

Fig. 18. Applying the transformation rules to the generic on-delay timer with
subsequent optimization options

A. Readability of Quartz-based SCChart

Compared to the underlying IEC 61131-3 FBD, we see an
opportunity to improve the readability through the translation
into Quartz and then to an optimized SCChart. This is due to
the fact that, unlike in the first approach, there is no nesting
of the sequentially executed function blocks within the state-
oriented SCChart transitions. Furthermore, since a notation
very similar to UML can be achieved, we assume that this
representation may be an accepted alternative view for users
who are not familiar with data-flow notation.

B. Correctness of the FBD-to-Quartz-to-SCChart Translation

The correctness of the second translation approach can be
evaluated in the same way as the first approach by checking
whether both models, the FBD-based Quartz model and the
resulting SCChart, have the same I/O behavior.

Conjecture 3. The FBD-based Quartz model and the resulting
SCChart have the same I/O behavior when the presented
transformation rules for translating Quartz to SCChart are
applied.

The translation from IEC 61131-3 FBD to Quartz is as-
sumed to be correct, so the test is reduced to the translation
from Quartz to SCChart. The same I/O behavior is expected
for the listed test cases in the first approach. In this context,
the same behavior is tested via simulation using the KIELER
framework and the Quartz framework. Furthermore, the trans-
formation rules of the Quartz statements are based on the gen-
eral definitions of the Quartz language [6] and the equivalence
of different Quartz statements, respectively. The correctness
is given by the fact that the rules are based on each other
and equivalent Quartz statements, such as await(true) and
pause, or while(true) and loop S are tested using the
KIELER framework. This does not represent a general proof
of correctness, but shows the correctness of the transformation
rules presented in this paper and confirms the use of available
general optimization strategies.

VI. RELATED WORK

Due to the intuitive data-flow notation, the implementation
of IEC 61131-3 based systems with FBDs is widely used
in the field and can be found in various engineering tools
(like Simulink, Labview7 and others). At the same time, it
can be observed that tool vendors offer more and more
features for even more abstract modeling that is easy to
understand by users from different domains (like SysML8,
UML, Stateflow9). The challenge with FBDs in real-world
applications is, among other things, the increasing complexity
that arises with growing program size. In addition, verification
proofs are required for safety-critical applications which is
why the translation of existing IEC 61131-3 programs to
formal models for verification purposes dominates the research
[14]–[20]. Furthermore, some approaches follow the strategy
of a functional reuse of FBDs in IEC 61499 based systems.
It has been shown [21] that this standard has no valuable
benefit for improving the IEC 61131-3 development process.
In another approach [4], the authors pursue the goal of
reusing existing IEC 61131-3 FBDs as a synchronous Quartz
model in the context of a model-based design by splitting
the function blocks into concurrent threads to counteract the
sequential execution order. Furthermore, after an extension of
the KIELER framework over the last years [22], a semanti-
cally equivalent control flow oriented counterpart to the data-
flow representation as SCChart can be generated. Since the
complexity of the transitions in the control-flow representation
relates to the sequential execution of the blocks in the FBD,
we see the risk that the representation can quickly become
difficult to understand. In another approach [23] related to
the KIELER framework, the translation from the synchronous

7https://www.ni.com/de-de/shop/labview.html
8https://sysml.org/
9https://de.mathworks.com/products/stateflow.html

language Blech10 to SCCharts is introduced. The authors try
not to capture all the semantics of the original code, but only
the underlying state structure. The goal is an automatically
generated documentation with a higher level of abstraction.
As far as we know, our approach is one of the few or even the
only one, which is motivated in contrast by not only obtaining
a higher level of abstraction for documentation purposes, but
still enabling a formal verification and a functional reuse of
existing FBDs as a better readable model-based design in
software engineering.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents two translations for existing IEC 61131-3
FBDs into synchronous graphical SCCharts described by their
textual description and evaluates the impact on readability. The
first approach is based on the idea of translating existing FBDs
following the strategy of a backward translation to equivalent
textual ST models from which the textual input format for
data-flow-oriented SCCharts can be derived. Using the exam-
ple of the generic on-delay timer application, it is explained
that a graphical data-flow-oriented SCChart at the same level
of readability as the underlying FBD can be created. The
equivalent representation as a state-oriented SCChart has the
risk that the complexity of the nested function block calls may
lead to a worse readability of the original FBD. The second
approach is based on the idea of translating the translated
ST models into imperative synchronous Quartz models and
performing code refactoring within the synchronous paradigm
to nest the function blocks and logic hierarchically. Depending
on the FBD complexity, this allows deriving more readable
state-oriented SCCharts compared to the first approach, which
represents an alternative representation of the original FBD.
Thus, a beneficial functional reuse in software engineering is
possible.

This research activity will further investigate additional
Quartz code refactoring approaches to further improve the
Quartz model as well as the readability of the resulting SCCha-
rts. As an example, we will analyze whether the instantaneous
statements before and after the nested if-else conditions
can be eliminated by including synchronous concurrency state-
ments.

REFERENCES

[1] DIN Deutsches Institut für Normung e.V., “Programmable controllers –
part 3: Programming languages (IEC 61131-3:2013); german version en
61131-3:2013,” Berlin, 2014.

[2] D. Witsch and B. Vogel-Heuser, “Automatische Codegenerierung aus der
UML für die IEC 61131-3,” in Eingebettete Systeme, P. Holleczek and
B. Vogel-Heuser, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 9–18.

[3] G. Bayrak, F. Abrishamchian, and B. Vogel-Heuser, “Effiziente
Steuerungsprogrammierung durch automatische Modelltransformation
von Matlab/Simulink/Stateflow nach IEC 61131-3,” Automatisierungs-
technische Praxis (atp), vol. 50, no. 12, pp. 49–55, 2008.

[4] M. C. Werner and K. Schneider, Translation of Continuous Function
Charts to Imperative Synchronous Quartz Programs. New York, NY,
USA: Association for Computing Machinery, 2021, p. 104–110.

10https://www.blech-lang.org/

[5] R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler,
J. Aguado, S. Mercer, and O. O’Brien, “SCCharts: Sequentially Con-
structive Statecharts for Safety-Critical Applications,” in Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 372–383.

[6] K. Schneider, The synchronous programming language Quartz, 2nd ed.
Kaiserslautern: Department of Computer Science, University of Kaiser-
slautern, 2010.

[7] R. W. Lewis, Programming Industrial Control Systems Using IEC 1131-
3 (IEE Control Engineering Series). Institution of Engineering and
Technology, 1998.

[8] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Guernic, and
R. Simone, “The Synchronous Languages 12 Years Later,” in Proceed-
ings of the IEEE, vol. 91, 02 2003, pp. 64 – 83.

[9] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” in Proceedings of the IEEE, vol. 79, no. 9, 1991,
pp. 1270–1282.

[10] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: design, semantics, implementation,” Science of Computer
Programming, vol. 19, no. 2, pp. 87–152, 1992.

[11] D. Darvas, I. Majzik, and E. Blanco Viñuela, “Generic representation
of PLC programming languages for formal verification,” in Proceedings
of the 23rd PhD Mini-Symposium. Zenodo, Feb. 2016, pp. 6–9.

[12] J. Yoo, E. S. Kim, and J. S. Lee, “A behavior-preserving translation from
FBD design to C implementation for reactor protection system software,”
Nuclear Engineering and Technology, vol. 45, no. 4, pp. 489–504, 2013.

[13] S. Prochnow, C. Traulsen, and R. von Hanxleden, “Synthesizing Safe
State Machines from Esterel,” in Proceedings of the 2006 ACM SIG-
PLAN/SIGBED Conference on Language, Compilers, and Tool Support
for Embedded Systems, ser. LCTES ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 113–124.

[14] S. Rösch, S. Ulewicz, J. Provost, and B. Vogel-Heuser, “Review of
model-based testing approaches in production automation and adjacent
domains—current challenges and research gaps,” Journal of Software
Engineering and Applications, vol. 08, pp. 499–519, 01 2015.

[15] T. Ovatman, A. Aral, D. Polat, and A. O. Ünver, “An overview of
model checking practices on verification of PLC software,” Software
and Systems Modeling, vol. 15, no. 4, pp. 937–960, 2016.

[16] D. Darvas, I. Majzik, and E. Blanco Viñuela, “Formal Verification
of Safety PLC Based Control Software,” in Proceedings of the 12th
International Conference on Integrated Formal Methods - Volume 9681,
ser. IFM 2016. Springer Berlin Heidelberg, 2016, p. 508–522.

[17] H. Barbosa and D. Déharbe, “Formal Verification of PLC Programs
Using the B Method,” in Abstract State Machines, Alloy, B, VDM, and Z,
J. Derrick, J. Fitzgerald, S. Gnesi, S. Khurshid, M. Leuschel, S. Reeves,
and E. Riccobene, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 353–356.

[18] N. Völker and B. J. Krämer, “Automated Verification of Function Block
Based Industrial Control Systems,” Sci. Comput. Program., vol. 42, pp.
101–113, 01 2002.

[19] V. Gourcuff, O. De Smet, and J. M. Faure, “Efficient Representation
for Formal Verification of PLC Programs,” in 2006 8th International
Workshop on Discrete Event Systems. IEEE, 2006, pp. 182–187.

[20] B. Fernandez Adiego, D. Darvas, E. B. Vinuela, J.-C. Tournier, S. Bli-
udze, J. O. Blech, and V. M. Gonzalez Suarez, “Applying Model
Checking to Industrial-Sized PLC Programs,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 6, pp. 1400–1410, 2015.

[21] K. Thramboulidis and G. Frey, “Towards a Model-Driven IEC 61131-
Based Development Process in Industrial Automation,” Journal of
Software Engineering and Applications, vol. 04, pp. 217–226, 2011.

[22] L. Grimm, S. Smyth, A. Schulz-Rosengarten, R. von Hanxleden, and
M. Pouzet, “From Lustre to Graphical Models and SCCharts,” in 2020
Forum for Specification and Design Languages (FDL), 2020, pp. 1–8.

[23] D. Lucas, A. Schulz-Rosengarten, R. von Hanxleden, F. Gretz, and
F. Grosch, “Extracting Mode Diagrams from Blech Code,” in 2021
Forum on specification and Design Languages (FDL), 2021, pp. 01–
08.

