
Deep Learning Algorithms Elaboration for
Embedded Systems Implementation

Luigi Capogrosso
Department of Computer Science, University of Verona

luigi.capogrosso@univr.it

Abstract—Recent advances in deep learning have brought
a step-change in the abilities of machines in solving complex
problems like object recognition, person detection, and pose
estimation. Although many of these tasks are important on mobile
and embedded devices, especially for sensing and mission-critical
applications such as autonomous driving and video surveillance,
existing deep learning solutions often require a large number
of computational resources to run. Running these models on
embedded devices can lead to long runtimes and the consumption
of abundant amounts of resources, including CPU, memory, and
power, even for simple tasks. Without a solution, the hoped-for
advances in embedded machine/deep will not arrive. This thesis
proposes novel techniques that guarantee a smooth transition
of deep learning technology from a scientific environment with
virtually unlimited computing resources into embedded systems.
At the moment, specifically deal with the two typologies of deep
learning techniques for achieving this goal: split computing and
tinyML.

Index Terms—Deep Neural Networks, Embedded Devices, Split
Computing, tinyML, Simulation, Testing

I. INTRODUCTION

In the last decade, deep neural networks (DNNs) achieved
state-of-the-art performance in a broad range of problems,
spanning from object classification and feature detection to
speech recognition and predictive maintenance. This success
comes at a price: the computational requirements of some
DNNs preclude their deployment on most of the resource-
constraint devices, such as mobile phones available today;
we refer to this scenario as local-only computing (LC). A
possible alternative consists of running simplified models, such
as MobileNetV2 on the devices, but this has an impact on the
overall accuracy. The current approach, usually referred to as
remote-only computing (RC), consists in transferring the data
captured by the device to a high-performance machine through
a communication network and then sending back the result
to the device. In this case, the communication network may
become a bottleneck and, in any case, it should be properly
configured to match the quality of service requirements of
the pattern recognition application. As a compromise between
LC and RC approaches, the split computing (SC) frameworks
propose to divide the DNN model into a “head” on the sensing
device and a “tail” on the remote server.

Starting from the above examples, it is understandable that
the design of a distributed deep learning application results
in moving into a three-dimensional design space exploration.
A given implementation is determined by the choice of the
computation platform, the communication architecture, and the

Fig. 1. Steps to enable a smooth transition of deep learning algorithms into
embedded systems. The boxes in green, thus the model analysis (A) and on-
host evaluation (C) sections are the phases where we started to set up our
work. On the other hand, the boxes in red, i.e., sections model optimization (B)
and target deployment (D), are those on which future work will be focused.

deep neural network. Whereas the first two dimensions are
deterministic, in the sense that a given choice of platform or
communication architecture brings to a certain performance,
dealing with DNNs introduces uncertainty. Actually, a DNN is
a statistical classifier, with millions of parameters and plenty
of architectures, whose timing is not deterministic as so as its
efficacy, usually measured in terms of accuracy. It follows that
a given DNN can be evaluated only by training it and testing
on some validation partition. When it comes to distributed
architectures, and split computing strategies, the situation
becomes even harder, since it type of split requires specific
training. It turns out that deciding on a properly distributed
architecture hosting DNNs, and manipulating diverse split
computing configurations requires days.

Furthermore, over the decades there has been tremendous
research focus dedicated to meliorating embedded technolo-
gies for use in resource-limited environments. This research
has been driven by the fact that it is the key strategy for pro-
viding real-time solutions for many complicated, and safety-
critical real-world applications. In this regard, the microcon-
troller unit (MCU) based embedded systems have garnered
tremendous attention, primarily due to the low power require-
ment, secondly due to the crucial performance and reliability
traits such as safety, security, maintainability, and adaptability.



This leads to the need to adopt a new paradigm: tinyML.
It’s only recently that we’ve been able to run ML on a
microcontroller at all, which means that hardware, software,
and research are all changing extremely quickly.

Therefore, we can easily understand how embedded deep
learning will open up a series of possibilities for applications
in IoT devices, such as autonomous cars, and other devices
so that they have intelligent functionalities that today are
restricted to computers and smartphones. We will see voice
interfaces in almost everything in the future. As soon as we
can create suitable voice interfaces at a low cost, we will have
them on any consumer item, replacing buttons on any device,
especially if you think of devices combining audio and video.

II. ACHIEVED RESULTS

In this paper [1], we propose a fast procedure to select the
best split location for a generic DNN architecture that, for the
first time, is predictive of the accuracy that the system will
have once retrained. The procedure is dubbed I-SPLIT, where
“I” stands for interpretability. I-SPLIT builds upon the concept
of importance or saliency of a neuron, which is related to the
gradient it possesses with respect to the decision towards the
correct class, for specific input. Importance is exploited with
success in the Grad-CAM approach: Grad-CAM creates an
input neuron saliency map that indicates which parts of an
input image are more important for deciding a specific class.
In particular, the Grad-CAM approach has been proved to be
strongly dependent on the given trained model on which it runs
(it passes the “sanity check” test), while other approaches do
not, making it perfectly suited to our purposes.

I-SPLIT exploits Grad-CAM by creating for a given image
multiple saliency maps, one for each layer of the network,
which we rename as importance maps. Each layer-based im-
portance map can be accumulated in a single value, accounting
for how many important neurons it is formed by. Therefore,
a single image gives rise to multiple CUmulated Importance
(CUI) values, one for each layer, that can be rearranged into
a CUI curve. Multiple validation images create multiple CUI
curves, that summed together do create a statistic of how much
a layer is, in general, decisive for the right class. A layer
that exhibits a high CUI value needs to be preserved, i.e., the
bottleneck should be injected right after this layer. Higher CUI
values are predictors of high accuracy, and the ranking over
CUI allows one to easily select the optimal splitting point.

Several are the advantages of I-SPLIT. The process is com-
putationally efficient: the evaluation of the CUI values for N
potential splitting points requires one step of backpropagation
for each image of a given validation set, instead of N complete
retraining sessions; in practice, for 10 potential splitting points
to evaluate, I-SPLIT requires 150 minutes on a VGG network,
instead of 6 hours needed to for the retraining. Moreover,
we are able to discriminate, among layers of the same size
which one is best suitable as the splitting point. Finally, and
most interestingly, our approach shows that optimal splitting
points are conditioned on the specific classes that the network
is expected to process: indeed, specific classes trigger specific

neurons, which in turn highlight layers which are possibly dif-
ferent. This provides the fresh-new concept of class-dependent
split decision, which allows us to adapt the splitting point
depending on the classes taken into account.

Furthermore, in [2], we propose Prometheus: a simulation
software that eases the design of a distributed architecture with
one or more DNNs operating inside. Other than accurately
mimicking diverse communication protocols and memory re-
quirements, Prometheus adds a unique feature, which is that of
suggesting the proper configuration to simulate, and in particu-
lar how to cut the network to provide optimal performances in
terms of accuracy. The rationale is to preserve the portions of
the network where crucial decisions are taken. As a result, we
show how the proposed framework unveils the performance
bottlenecks of the architecture and facilitates the discovery
of design options that satisfy users’ requirements without the
need for a complete real test setup.

Finally, we proposed a systematic review on tinyML. In
this article [3], firstly we give a precise definition of what
tinyML is, talking about their benefits and constraints. We then
show how efficient deep learning can help in the realization of
tinyML devices, and the seminal work there. Secondly, we list
the use cases, models, datasets, and benchmarks that represent
the current state-of-the-art about tinyML. In addition, we
introduce the role of Industry 4.0 in the tinyML-IoT scenario.
We believe that this review will serve as an information
cornerstone for the tinyML research community and pave the
way for further research in this direction.

III. THESIS COMPLETION

In the near future, we plan to continue to improve on what
we have achieved so far. Specifically, concerning I-SPLIT, fu-
ture works will include further investigation of interpretability
methods as a way to extract additional metrics to be used in
the generation of the I-SPLIT curve. Regarding Prometheus,
instead, we will focus on investigating specific techniques
of tensor reconstruction to handle packet losses in an UDP
transmission.

In addition, we will begin to analyze with new works the
model optimization and target deployment stages of the Fig.
1. Specifically, dealing with the three main typologies of
deep learning techniques for achieving this goal: (i) neural
architecture search (NAS), (ii) quantized neural networks, (iii)
network pruning, and (iv) structural efficiency.

Finally, another important field of study in order to achieve
the objectives of this thesis is neuromorphic computing, i.e.,
the use of very-large-scale integration (VLSI) systems con-
taining electronic analog circuits to mimic neuro-biological
architectures present in the nervous system.

REFERENCES

[1] F Cunico, L Capogrosso, F Setti, D Carra, F Fummi, and M Cristani,
“International Conference on Pattern Recognition”, ICPR 2022.

[2] L Capogrosso, F Cunico, A Lucchese, M Cristani, F Fummi, D Quaglia,
“International Conference on Computer-Aided Design”, ICCAD 2022.

[3] L Capogrosso, F Cunico, F Fummi, M Cristani, “IEEE Transactions on
Pattern Analysis and Machine Intelligence”, PAMI 2022.


	Introduction
	Achieved Results
	Thesis Completion
	References

