Automated Suggestions Framework for Processing
Hardware Specifications Written in English

Rahul Krishnamurthy
Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, Virginia, USA 24061
rahulk4 @vt.edu

Abstract—Automatic creation of formal models from natural
language specifications can help reduce design time and manual
errors. However, the accuracy of the translation may not be high
due to the ambiguous, incomplete, and inconsistent nature of
natural language. Specifications written in a controlled natural
language (CNL) can overcome the problems associated with
natural language translation and deliver similar benefits in
automation. However, a user has to learn to write in a CNL.
We propose a suggestions framework that provides automatic
feedback to assist users in writing specifications in CNL. Our
feedback generates different ways of writing CNL acceptable sen-
tences when the input sentence is not understood. We developed a
ranking scheme to ensure the semantics of generated suggestions
are closer to the input specification’s intent. We evaluated the
framework on 132 erroneous specifications taken from AMBA
and memory controller architectures documents. OQur system
generated suggestions for all the specs. On manual inspection,
we found that 87 % of these suggestions were semantically closer
to the intent of the input specification.

Index Terms—controlled natural language, Assertion-based
verification, Suggestion generation

I. INTRODUCTION

One of the root causes for the difficulties in hardware
design validation is the informal nature of specification doc-
uments [1], [2]. Specification documents contain the intended
behavior of the individual IP blocks and the overall SoC design
in natural language, charts, and tables. The absence of stan-
dardization in writing specifications leads to inconsistencies,
ambiguities, and even errors in requirement documents [1].
The design validation process is further delayed when these
erroneous specifications are used as an authoritative guide for
planning various design activities [1].

Standardized specifications not only have the benefits of
being clear, coherent, and unambiguous but can also allow for
automatic verification of the design. Automating verification
can improve verification time and reduce manual errors in
creating testbench and assertions [3].

Recent work on standardizing specifications and automatic
formal code generation in [4], [5] manually translates speci-
fications to a formal modelling language like UML, SysML,
etc. These formal models represent specs unambiguously and
can be automatically translated to hardware assertions but

supported in part by NSF grant 2101021.
978-1-6654-7332-3/22/$31.00 © 2022 IEEE

Michael S. Hsiao
Department of Electrical and Computer Engineering
Virginia Tech, Blacksburg, Virginia, USA 24061
hsiao@vt.edu

involve the time-consuming process of manual creation of
models. In contrast, writing specifications in standardized
English language is easier and much more intuitive. However,
standardized English is a subset of natural language with
limited vocabulary and restricted grammar rules. A user may
not be aware of syntactic and semantic constructs allowed
in the standardized English language to write specifications.
Therefore, it would be extremely useful if immediate feedback
to any mistakes to a spec could be provided to the user.

As a motivating example, the following spec “CDREADY
should be high on 3 cycles after assertion of CDVALID”
may seem correct to the user but is actually ambiguous and
cannot be translated. The ambiguity is about the time of
triggering the event. It is unclear if the CDREADY signal
should be high after or exactly on 3 cycles. A user has to
be informed automatically about these and other issues and
given suggestions to fix the sentence that can be accepted by
the system.

We present a suggestion generation framework that provides
feedback to users on writing specifications that comply with
the grammar and vocabulary of a controlled English language.
Specifications written according to an underlying grammar
are parsed and translated to either semantic frames or system
verilog assertions. The framework is built on top of the BINGO
model [6] that consist of a grammar and a parser to understand
specs written in English.

Our Contributions are summarized as follows:

o The generated suggestions are ensured to be syntactically
and semantically accurate.

o A ranking scheme is developed to generate top ranked
suggestions closer to the syntactic and semantic structures
of the input specification.

« An input sentence can be rewritten by adding new words,
removing existing words and re-ordering the words at any
location in the input spec.

e We can infer design variables like signals and registers
from the input spec. using contextual analysis at the end
of suggestion generation. As a result, a user can write
their design specific variable names in specs without
explicitly declaring them a priori.

o Our suggestion framework is only dependent on the gram-
mar rules of BINGO model. We can port our suggestion

mechanism to any domain by simply creating domain
specific grammar rules in the BINGO format.

The rest of the paper is organized as follows. Section
2 discusses some previous authoring support techniques for
CNLs and earlier work in rewriting sentences. In Section 3,
a brief overview of BINGO framework is presented. Section
4 presents the methodology of our suggestions framework. In
Section 5, we discuss the evaluation of our work. Finally, a
concluding summary is presented in Section 6.

II. RELATED WORK

A user can express the same semantics in a natural language
through different words and different order of words. However,
a semantic parser can parse only a subset of words and
sentence structures that are defined in the CNL grammar.
Hence, users have to learn CNL specific templates or grammar
rules to write CNL acceptable sentences.

A common approach to alleviate user efforts in learning
CNL rules is to employ an auto-completion feature in the
CNL editor. Auto-completion feature can predict the next
word based on the word’s syntactic compatibility with the
already written words of the sentence. The predictive text
editor in [7] performs auto-completion using a lookahead
analysis based on Prolog DCG grammar rules and parser. The
predictive editor in [8] is implemented using a statistical n-
gram language model. However, merely predicting the next
syntactically accurate word may not be enough to generate a
CNL acceptable sentence. A syntactically accurate sentence
may still be semantically incorrect and may not create the
intended output. CNL editor proposed in [9] provides a com-
bination of a predictive editor and a menu-based graphical user
interface that allows the user to edit the underlying interme-
diate representation of the CNL. However, as shown in [10],
users can be overwhelmed by many options in a drop-down
menu. In [11], [12] context vectors obtained from parsing of
the erroneous sentence are used to generate suggestions.

In [13], semantic parsing of sentences with unknown words
and sentence structures is achieved by rewriting the sentence
into an acceptable form while preserving the input sentence
semantics. A sentence is rewritten using rules and templates
that are extracted from a paraphrase database. However, each
rewritten sentence is parsed to pick a logical form that is
semantically closer to the input sentence. Semantically parsing
all possible rewritten sentences may consume a lot of time and
may not be a viable option for an input sentence with many
rewritten forms in a real-time system. In [14], rewrite patterns
and relaxed grammar rules are created to find and rewrite the
erroneous phrase in a sentence. The rewrite rules are created
in addition to the existing grammar rules needed to parse the
sentence. The manual process of creating rewrite patterns in
addition to hand-crafted grammar rules may not scale well to
cover a large spectrum of sentences that cannot be parsed.

We propose a suggestion framework that can generate
alternate ways of writing sentences when an input sentence
is not completely understood. Our approach can lead to
the insertion of new words, removal, and re-ordering of the

Input spec: CDREADY should be high on 3 cycles after assertion of CDVALID
1 2 3 4 5 6 7 8 9

CDREADY 1 should be ,2

1] 1] 2] 3] 4] 1] 1] 12]
Parse 1 _ _____@_ ___@__Lgs:______ @__A____ R
11[21_ 11651_ 2 Lsé 23& - 7231 2361 :
VR 3]
e @ L@@ @@ @ wd
_Ji2n 1275] De3a| [| Dse3 | 2632 _|'2_8—|§_3]
gy L1 Ty ¥ T~ 5] T
Parse3 1| i _@ @ _ _@_ —L7—'——-————:—®——;—r L11+ | L12+ | L7+
. 13|A9_' 1379 [21033 11]6_ - v 21033 1 = II&
113 [i4 15 [!
el b ____ 4+ _L_7_-________@__ _!-L@I-—J-Lit-l-_--
4|_15_ 14213 piasd [| 71434 i _[21168 [
L14-
—
of, 8 CDVALID, 9
[1] 2] [1]
Parse5 [L13- @ L1+
—

Fig. 1. Incomplete set of charts at the end of BINGO parsing.

existing words of the input specification to make it acceptable
to the CNL system. In our work, we leverage our existing
syntactic-semantic grammar rules to rewrite sentences instead
of creating additional rewriting rules. Our approach doesn’t
require parsing of all possible rewritten sentences to ensure the
generation of CNL acceptable sentences. We have developed
a ranking mechanism to rank a list of suggestions based on
their syntactic and semantic similarity with the input sentence
that was not understood. Our approach utilizes the knowledge
of syntactic-semantic dependency relations between words
defined in our grammar and operates on incomplete parse trees
produced by the BINGO model.

III. BINGO FRAMEWORK

This section provides a brief overview of the BINGO
framework and terminology that will be useful in explaining
the proposed suggestion generation.

BINGO model: In the BINGO model [6], dependency
grammar creation is analogous to creating BINGO charts
for each word. In this model, a chart parser scans charts
of all words to find a completed BINGO row. A completed
BINGO row represents the meaning of an input specification.
The proposed suggestion analysis is initiated when either (1)
multiple completed BINGO rows are created or (2) no single
completed BINGO rows are found at the end of parsing.

The words of the input spec in Figure 1 are represented as
nodes of a parse tree in the BINGO framework. The nodes
are further labelled by their position (in red color) in the input
sentence. Figure 2 illustrates grammar rules for nodes used to
create charts in Figure 1. The links are labelled as L; (where
7 is an index to the link) for the ease of explaining them in
the node charts.

The nodes in grammar rules that are indicated in brackets ‘<
”, ‘>’ represents rules for a category. For example, ‘<signal>’
rules are assigned to all signal category nodes during parsing.

Chart Creation: The link rules of ‘<signal>’ node consist
of two disjunct links Ly and Li4. The disjunct links of

‘<signal>’ are represented by two separate rows in the chart
of the node ‘CDREADY’ in Figure 1. The remaining dashed
cells in the node ‘CDREADY’ chart are created by replicating
the first row link L, during parsing.

The conjunct links of a node’s grammar rules are repre-
sented by a single row in the node’s chart. For example, the
conjunct links Lq,L9,L3 and Lg in the rule of the node ‘should
be’ is translated to a single row in the chart of ‘should be’ in
Figure 1. The self links like L5 and Lg in the grammar rules
are not shown in the charts. These self link rules are used to
manipulate the semantics of frames on the node and do not
connect words in dependency relations.

Marking chart cells: Figure 1 illustrates charts of nodes at
the end of parsing. The marking in these charts is indicated by
circling the links in the cells. The links in the cells correspond
to the syntactic-semantic links of the grammar rules that
are shown in Figure 2. The links with the same label but
with opposite direction polarity of ‘+’ and ‘-’ and opposite
dependency polarity of ‘head” and ‘child’ are considered
matched links and are marked with the same connection id.
The connection id is shown at the bottom right corner of the
marked cells.

Two cells with the same connection id indicate a connection
between two nodes in a parse tree. For example, connection
id ‘1121’ in the chart of nodes ‘CDREADY’ and ‘should be’
represents linking between these nodes through links L+ and
L1- in a parse tree.

Chart Cell identifiers: As illustrated in Figure 1, the cells
of connected links are recognized by assigning a unique cell
connection id at the bottom right corner of these cells. A cell
connection id is derived from the node and cell ids of the
marked links. A node id (marked in red) represents the node
position in the sentence, and a cell id (marked in black) is
shown in each chart cell. For example, in ‘CDREADY’ chart,
the cell connection id of the L; link in the first row is 1121
(node 1 cell 1 and node 2 cell 1) and is different from the
L link of the second row. A unique cell connection id acts
as a pointer to the connected cell and assists in traversing the
connected cells while selecting the BINGO rows.

Complete Parse or BINGO row: A node is understood
unambiguously when only one row of the node’s chart has all
the mandatory cells marked. A single complete parse tree is
obtained when all the nodes of the input spec are understood
unambiguously. A complete parse tree is represented by a
single BINGO row that passes through all the charts of all
the nodes and contains only marked cells.

In Figure 1, the chart of some nodes have incomplete
marking in their rows and can never be fully connected in
a parse tree. For example, the chart of node ‘should be’ does
not have a single row that is completely marked. Moreover,
the nodes ‘on’,‘assertions’ and ‘3 cycles’ have no marking in
their charts, and their charts are not shown in this figure. As
a result, we can never find a complete parse tree for all the
nodes of the input spec shown in Figure 1.

Incomplete parse trees: We can extract all the incomplete
parse trees by searching for a line that passes through all the

<signal> = S+;signal_expr:signal_node:node;child or
L1
J-;change_expr:change_what_signal:node;child
L14
should be = S-; signal_expr:signal_node:node;head &
L1
O+; signal_expr:signal_value_is:node;head &
L2
(MV+;0ccur_expr:occur_when_after_clock:slot:same;head or
L3
MV+;0ccur_expr:occur_when_before_clock:slot:same;head) &
L4
self;occur_expr:occur_what:SE:signal_expr;self &
L5
(MV+;if_expr:ante:slot:same;head or
L6
MV-;if_expr:ante:slot:same;head) &
L7
self;if_expr:conse:SE:occur_expr;self
L8
<value> = O-; signal_expr:signal_value_is:node;child
L2
after = (MV-;occur_expr:occur_when_after_clock:slot:same;child &
L3
J+;0ccur_expr:occur_when_after_clock:node;head) or
L9
(MV-;if_expr:ante:slot:same;child & J+;if_expr:ante:slot:same;head) or

L6 L10
(J+;if_expr:ante:slot:same;head & {prep_comma+;;head} &
L11 L12

MV+;if_expr:ante:slot:same;child)
L7
Mf-;change_expr:change_what_signal:slot:same;child &
L13
J+;change_expr:change_what_signal:node;head
L14

of =

Fig. 2. Grammar rules for creating charts shown in Figure 1.

connected marked cells. The incomplete parse trees extracted
from the charts of Figure 1 are shown in Figure 3. In our
framework, every Parse i (where i is an index for an incomplete
parse tree) is stored as a list of elements. Each element of a
Parse i contains the node, the row id (Rid) of the node that is
a part of the parse tree, and the status of the node’s row id.
The status of row id is ‘full’ when all the cells in the row are
marked otherwise the status is set to ‘partial’.

Semantic role: The semantic role of a node in a parse tree
is represented by the row of the node’s chart that is a part of
the parse tree. For example, in Figure 3, the semantic role of
node ‘CDREADY’ in Parse 1 is represented by row id 1 of the
‘CDREADY’ chart. The row id 1 of ‘CDREADY" chart con-
tains only one link °‘S+;signal_expr:signal_node:node;child’
that defines the semantic role of the node ‘CDREADY’. The
link indicates that the ‘CDREADY’ node has a semantic role
of a signal that can be placed in a slot ‘signal_node’ in the
semantic frame ‘signal_expr’. The interpretation of grammar
link rules is explained in [6].

concept node: A concept node is a node that contributes
to the semantics of the domain. For example, ‘CDREADY’
is a concept called signals. The node ‘assertion’ refers to
the concept of asserting a signal value. The concept nodes
in the input spec of Figure 1 are ‘CDREADY’,‘high’,‘3
cycles’,‘assertion’ and ‘CDVALID’.

non_concept node: A non_concept node is a node that has
a syntactic purpose of connecting nodes in a parse tree. The
non_concept nodes in the input spec in Figure 1 are ‘should
be’, ‘on’, ‘after’ and ‘of’.

Every parse tree is associated with the following four
parameters:

missing_input_concept_node_in_parse (MIC): MIC i for
a Parse i is a list of concept nodes of the input spec that
are not present in the Parse i tree. For example, in Figure
4, MIC 1 contains concept nodes ‘3 cycles’, ‘assertion’ and
‘CDVALID’ since these are not part of Parse 1 tree. MIC 5
for Parse 5 contain nodes ‘CDREADY’, ‘high’, ‘3 cycles’ and
‘assertion’.

missing_input_concept_node_sem_role_in_parse
(MICS): MICS i for a Parse i is a list of semantic roles for
missing concept nodes of Parse i. These semantic roles for
concept nodes exist in some other parse tree except for Parse
i. In Figure 4, MICS 1 for Parse 1 represents semantic role
for each node in the MIC 1 list. The semantic roles for ‘3
cycles’ and ’assertion’ in MICS 1 are both denoted by ‘None’
since these nodes are not part of any parse tree. On the other
hand, the third element {CDV ALID, [Rid : 2]} in MICS 1
indicates that the CDVALID node link rule corresponding to
row id 2 is missing in Parse 1 but exist in some other parse
tree. MICS 5 for Parse 5 contains {CDRFEADY, [Rid : 1]}
for the missing CDREADY concept node. The row id 1 of
CDREADY corresponds to the L;+ link that exists in Parse
1, Parse 2, Parse 3 and Parse 4 but is missing in Parse 5.

missing_input_non_concept_node_in_parse (MIN): MIN
i for a Parse i is a list of non_concept nodes of the input spec
that are not present in the Parse i tree. In Figure 4, MIN 1
list contains the nodes ‘on’ and ‘of” since these non_concept
nodes are not part of Parse 1 tree. Similarly, MIN 5 contains
nodes ‘should be’, ‘on’ and ‘after’.

missing_input_non_concept_node_sem_role_in_parse
(MINS): MINS i for a Parse i is a list of semantic roles for
missing non_concept nodes of Parse i. These semantic roles
for non_concept nodes exist in some other parse tree except
for Parse i.

For example, in Figure 4, the element {of,[Rid : 1]} in
MINS 1 indicates that Parse 1 does not contain link rules of
row id 1 from node ‘of” chart. MINS 5 contains all the row ids
of ‘should be’ and ‘after’ that correspond to their unique link
rules that are not part of Parse 5 tree but exist in other parse
trees. For example, in element {should be, [Rid : 1, Rid :
2, Rid : 3, Rid : 4]}, all the rows of ‘should be’ corresponds
to different link rules that are not part of MINS 5 but exist in
Parse 1, Parse 2, Parse 3 and Parse 4 trees. Similarly, MINS
5 contains the element {after, [Rid : 1, Rid : 2|} that has
unique rows of ‘after’ chart that exist in other parse trees
except for Parse 5.

IV. METHODOLOGY

Our suggestion framework takes incomplete parse charts as
input from the BINGO model to generate feedback for users.

Parse 1: [{ node: CDREADY, Rid:1,status: full }, { node: should be, Rid:1,status: partial },
{ node: high, Rid:1,status: full }, { node: after, Rid:1,status: partial }]

Parse 2: [{ node: CDREADY, Rid:2,status: full }, { node: should be, Rid:2,status: partial },
{ node: high, Rid:2,status: full }, { node: after, Rid:2,status: partial }]

Parse 3: [{ node: CDREADY, Rid:3,status: full }, { node: should be, Rid:3,status: partial },
{node: high, Rid:3,status: full }, { node: after, Rid:4,status: partial }]

Parse 4: [{ node: CDREADY, Rid:4,status: full }, { node: should be, Rid:4,status: partial },
{node: high, Rid:4,status: full }]

Parse 5: [{ node: of, Rid:1,status: partial }, { node: CDVALID, Rid:2,status: partial }]

Fig. 3. Incomplete parse tree information extracted from Fig 1 charts.

Parse 1: [{ node: CDREADY, Rid:1,status: full }, { node: should be, Rid:1,status: partial },
{ node: high, Rid:1,status: full }, { node: after, Rid:1,status: partial }]

Parse 5: [{ node: of, Rid:1,status: partial }, { node: CDVALID, Rid:2,status: partial }]

MIC1: [3cycles, assertion, CDVALID] MIC5 : [CDREADY, high, 3 cycles, assertion]

MICS 1: [None, None, {CDVALID,[Rid:2] }] MICS 5: [{CDREADY,[Rid:1]}, {high,[Rid:1]}, None,
None]

MIN1: [on,of] MIN 5 : [should be, on, after]

MINS 1 : [None, {Of,[Rid:1] }] MINS 5: [{should be, [Rid:1, Rid:2, Rid:3, Rid:4]},
None,

{after, [Rid:1,Rid:2]}]

Fig. 4. Parameters of incomplete Parse 1 and Parse 5 from Fig. 1.

Figure 5 represents the major modules of our suggestion
framework. Inputs to our suggestion framework are the charts
of nodes processed through the BINGO model but could not
generate a single complete BINGO row. We extract all in-
complete parse trees from the charts as illustrated in Figure 1.
The analysis begins by selecting a set of incomplete parse trees
that are the best candidates to be completed. The incomplete
parse trees contain some rows that have status set as partial,
as shown in Figure 3. The partially filled rows have some
mandatory cells that are left unmarked. The unmarked cells in
the rows correspond to the syntactic-semantic links that could
not be connected during parsing.

The next step in the suggestion framework is to pick
candidate words from the vocabulary that can fulfill the linking
requirement of unmarked cells in the partially filled rows.
A ranking mechanism is developed to rank candidate words
where the top-ranked candidate words can create suggestions
with intent closer to the input specifications semantics. After
finding candidate words that can complete a parse tree, we pick

Suggestion Framework — 5

! Select an
incomplete parse
Pick best candidate | tree

Pick candidate words to
fill partial rows of the
parse tree

Input: i
Charts of words i
BINGO JE— > i
i
Model at the end of parsing |
H

After finding candidate words for
all the partially filled rows

Display Generate suggestion sentences Pick a set of top ranked candidate
suggestions « | corresponding to the completed parse trees| «— | words that can make parse tree
along with their| or generate output when the rewritten semantically closer to the input
semantics spec can be understood based on grammar spec

Fig. 5. Main blocks of suggestion framework on top of BINGO model.

a set of candidate words that can generate suggestions with
the highest semantic similarity score. Finally, the top-ranked
candidate words are connected in the parse tree. The completed
parse tree is analyzed to determine if it can be accepted as a
re-written form of input specification or if we should process
it as a suggestion. The complete list of suggestions and their
semantics are displayed to the user.

In the following subsections, we explain the sugges-
tion framework blocks in detail through an example spec:
“CDREADY should be high on 3 cycles after assertion of
CDVALID”. The spec could not be parsed and generated
incomplete charts as shown in Figure 1.

A. Selecting Incomplete Parse trees

As illustrated in Figure 1, we can extract five incomplete
parse trees from the charts. Our objective is to generate
suggestions that are semantically close to the user written
specification. In order to ensure the meaning of the suggestion
is closer to the user’s intent we pick the parse tree with
maximum connected concept nodes.

In Figure 1, Parse 1, Parse 2, Parse 3 and Parse 4 contain
maximum concept nodes: ‘CDREADY’ and ‘high’. These
are the best candidate parse trees and will be processed for
generating suggestions.

B. Finding Candidate Words

After selecting the incomplete parse trees, we begin the
search for candidate words that can be connected in the parse
tree to create a meaningful and parsable sentence.

A parse of a spec is incomplete due to the existence of
partially filled rows, as illustrated in the Figure 3.

We attempt to complete these partially filled rows by
adding words from the vocabulary that can fulfill the linking
requirement of the unmarked links. The process of searching
candidate words for the incomplete row of ‘should be’ chart in
Parse 1 is illustrated in Figure 6. The complete set of labeled
link rules for the candidate words/categories are shown in
Figure 7.

The ‘should be’ row in Parse 1 has an unconnected link
Lg+. The framework searches for a matching Lg— link in the
grammar and finds it in the link rules for the word ‘after’.
The system picks the word ‘after’ as a candidate word that
can satisfy the Lg+ link requirement. However, as shown in
Figure 7, the word ‘after’ has Lg— link in conjunction with
L5+ link. As a result, the addition of Lg— link in Parse 1
will also add the L;5+ link as an unmarked link in the parse
tree. We have to mark the new Li54 link to complete the
Parse 1 tree.

We can also have more than one word in the grammar
that can satisfy the link requirement of an unconnected link.
For example, Li5— link can be matched with L6+ link that
belongs to three different link rules of two words, ‘is’ and
‘being’. As shown in Figure 6, we add all three links and
their words in different set of candidate word lists. Each set
of candidate words list represents a group of words that can
separately fulfill all the link requirements of the partial row in

Picked unconnected link L6+ of the partial row of ‘should be’ node from Parse 1

Unconnected connecting connecting additional Candidate words list
links added link words/ links
due to connecting category
words/ categories
Initial Link L6+ L6~ after L15+ [after]1
L15+ L15- asserted L16- [after,asserted]1
L16- L16+ is L17- [after,asserted,is]1
is L18- [after,asserted,is]2 Created three separate
.) candidate words list
being L17- [after,asserted,being]3
L17- L17+ <signal> [after,asserted, is,<signal>]1
All link connections found
L18- L18+ <signal> L19+ [after,asserted, is,<signal>]2
L17- L17+ <signal> [after,asserted,being,<signal>]3
All link connections found
L19+ L19- [L20+ & L21+ [after,asserted,is,<signal>,[]2
120+ L20- <value> [after,asserted,is,<signal>,[,<value>]2
L21+ L21- 1 [after,asserted,is,<signal>,[,<value>,]]2

All link connections found

Fig. 6. Connecting L6+ link of ‘should be’ node from Parse 1.

after = MV-;if_expr:ante:slot:same;child & J+;if_expr:ante:slot:same;head
L6 L15
asserted = Pa-;assert_expr:assert_what_signal:slot:same;head &
L16
J-;if_expr:ante:slot:same;child & self;if_expr:ante:SE:assert_expr;self
L15
is = (S-;assert_expr:assert_what_signal:node;head &
L17
Pa+;assert_expr:assert_what_signal:slot:same;child) or
L16
(S-;None:None:SE_SE:signal_expr;head &
L18
Pa+;assert_expr:assert_what_signal:slot:same;child)
L16
being = S-;assert_expr:assert_what_signal:node;head &
L17
Pa+;assert_expr:assert_what_signal:slot:same;child
L16

<signal> = (S+;assert_expr:assert_what_signal:node;child) or
L17
(bitsqob+;signal_expr:signal_bit_position:slot:same;head &
L19
S+;None:None:SE_SE:signal_expr;child)
L18

[= bitsqob-;signal_expr:signal_bit_position:slot:same;child &

L19
bitsqob_value+;signal_expr:signal_bit_position:node;head & csqb+;;head
L20 L21
] = csgb-;;child
L21

<value> = bitsqob_value-;signal_expr:signal_bit_position:node;child
L20

Fig. 7. Link rule used for completing the connection of L6+ link of Fig 6.

the Parse 1 tree. The process of searching for matching links
and adding new candidate words and new links in our parse
tree continues until all the links in the parse tree are marked.
The end of this process is indicated in Figure 6 by “All link
connections found” comment for each candidate word list.

function compute_sugg_score(candidate_nodes_n_links,param)
/* pscore is an object to store parse parameter scores */
pscore ={MICS=0, MIC=0,sim_cat=0, MINS=0, MIN =0}

for(each candidate node ni in candidate nodes list), do
if(ni.word and ni.links covers semantic role in
param.MICS list), then
pscore.MICS = pscore.MICS + 1

else if(ni.word covers words in param.MIC list), then
pscore.MIC = pscore.MIC + 1

else if(ni.word category similar to category of words in
param.MIC list), then
pscore.sim_cat = pscore.sim_cat + 1

else if(ni.word and ni.links covers semantic role in
param.MINS list), then
pscore.MINS = pscore.MINS + 1

else if(ni.word covers words in param.MIN list), then
pscore.MIN = pscore.MIN + 1

end for loop
return pscore /* pscore has parameter values for candidate words */

end function

Fig. 8. Scoring candidate words based on parse tree parameters coverage.

C. Ranking Mechanism

Many lists of candidate words can be generated through the
process illustrated in Figure 6. The ranking mechanism assists
in selecting candidate words list that can generate suggestions
with semantics closer to the intent of user written specification.
The ranking mechanism assigns a score to different lists of
candidate words based on a simple counting scheme. Our
counting scheme counts the number of covered elements of
parameter lists by the newly added words and links.

As discussed earlier, every parse tree in our framework is
associated with four parameters: MIC, MICS, MIN and MINS.
The parameters list stores the words (MIC and MIN list) and
the semantic role of words (MICS and MINS list) of the input
spec that were not covered by the nodes in the parse tree. We
employ a counting scheme as shown in Figure 8 to assign
five different scores to the candidate words list based on their
coverage of the information in the parameters list.

For example in Figure 8, pscore. MICS refers to the count
of missing semantic role of words that are covered by the
candidate words and their links. If a candidate word covers a
semantic role given in the MICS list, then the pscore.MICS
score is incremented by one. Higher coverage of user written
words or semantic role of words in the suggestion would take
the suggestion semantics closer to the user intent.

We combine these five different scores and generate a single
score for a suggestion using a weighted equation shown in
Figure 9. In combined_score computation, we have given
the highest weight of five to the score corresponding to
the semantic role coverage. Weight for all other scores is

/* param is an object that contain the parameter lists of the parse tree*/
/* candidate_nodes_n_links is an object that contain candidate words
and their links picked from vocabulary */

pscore = compute_sugg_score(candidate_nodes_n_links,param)

combined_score = (5*pscore.MICS + 4* pscore.MIC + 3*pscore.sim_cat + 2*pscore.MINS + pscore.MIN)
Total new words being added in suggestion

if(combined_score == 0) , then
{

combined_score = -1 * Total new words being added in suggestion

}

Fig. 9. Computing a single score for a candidate words list.

Parse 1 partial rows completion

Should be

Candidate words/categories Score
1.75 after,asserted,is,<signal> 4
1.75 after,asserted,being,<signal>

1 after,asserted,is,<signal>,[,<value>,]

After

Candidate words/
categories
<clock_value>

Score

<clock_name>

Fig. 10. Final set of candidate words for partial row’s unconnected links and
their scores.

decremented by one according to their importance in capturing
the semantics of the suggestion. For example, concept words
related score pscore.MICS, pscore.MIC and pscore.sim_cat are
given higher weights than the non_concept words coverage
scores.

Because we want to generate concise suggestions, we have
used the count of new words taken from vocabulary as the
denominator in the combined_score metric for the suggestion.

The combined_score value will be zero when a candidate
words list fails to cover any elements of the parameters list.
In this scenario, we assign a score to the suggestion solely
based on the count of new words added to the partial parse.
Moreover, we assign these suggestions a negative value to
indicate the absence of any similarity between the newly
added words and the user-written words of the input spec.
The suggested words list with higher score are ranked higher.

Figure 10 illustrates the final set of candidate words required
to complete the partial rows in Parse 1. As shown in the figure,
the Lo link of the word ‘after’ requires a connection with
either a word of category < clock_value > or a word with
a category of < clock_name >. The input spec does not
contain any word that has < clock_name > category, and
hence the suggestion for using < clock_name > is assigned
a negative score by the system. The framework prefers the
use of < clock_value > due to the presence of clock_value
category word ‘3 cycles’ in the input spec that is not covered
by the Parse 1 tree.

D. Generating Suggestions

At the end of ranking mechanism, we have the top-ranked
candidate words and their links that can satisfy the unmarked
links of partial row. The top-ranked candidate words and their
links are connected in the parse tree to generate suggestions.
The final set of suggestions after processing all the incomplete
parse trees Parse 1, Parse 2, Parse 3 and Parse 4 is shown in
Figure 11. The red color words in the suggestions are taken

Input Specification: CDREADY should be high on 3 cycles after assertion of CDVALID

The following suggestions are created by extending partially understood phrases
of the input sentence:

Suggestion 1: CDREADY should be high after 3 cycles after CDVALID is asserted.
SVA 1: assert property(@(posedge clock) CDVALID == 1 |-> ##3 CDREADY == 1);

Suggestion 2: After CDVALID is asserted, CDREADY should be high before 3 cycles.
SVA 2: assert property(@(posedge clock) CDVALID == 1 |-> ##[0:3] CDREADY == 1);

Fig. 11. Final set of suggestions generated by the framework. User written
words in Red and newly added words in Blue.

Unknown design variables
Input spec: TID remains stable when TVALID is asserted and TREADY is Low.
Re-written Spec: <signal> remains stable when <signal> is asserted and <signal> is Low.

SVA : assert property(@(posedge clock) ((TVALID == 1) && (TREADY == 0)) |-> Sstable(TID));

Fig. 12. Signal name inference & SVA generation based on re-written spec.

from the user written spec. The blue color words are the new
words added to the spec from the vocabulary according to the
grammar rules.

The framework generates four suggestions for the input
spec but chose only two suggestions for display. The final list
of suggestions are selected based on the semantics generated
by the suggestions. The suggestions that can generate unique
semantics in few words are selected in the final output. As
shown in Figure 11, the System Verilog Assertion (SVA)
semantics of the generated suggestions are different and hence
they were selected to be displayed.

When the rewritten spec generated by the suggestion mech-
anism is acceptable by the grammar and covers all the concept
nodes, then through contextual analysis of each word in the
input spec and the rewritten spec, we can infer design variable
names and translate the rewritten spec to SVA, as shown in
Figure 12.

V. EVALUATION

The suggestions framework was implemented in JavaScript
and executed on Node.js platform. Experiments were run on
a machine with 1.8 GHz Intel Core 17-8550u processor and
16GB RAM. A major goal of this research is to generate
different suggestions that are semantically closer to the spec-
ifications written in unconstrained natural language. We also
wanted the system to have the ability to use the rewritten
form of input spec to infer variable names and generate SVA
if the re-written spec is equivalent in semantics to input
specification.

We created grammar rules and vocabulary based on spec-
ifications taken as it is from AMBA ACE [15] document.
We manually wrote specifications in English based on the
semantics of assertions verifying memory controller architec-
ture given in [16]. We then created restricted grammar rules
and vocabulary for these memory controller specifications. We
never stored the names of design variables in our vocabulary
and instead wanted the system to infer them automatically
based on the context.

Different words used in specifications
Input spec: AWVALID is LOW for the first cycle after ARESETn goes HIGH.
Re-written Spec: <signal> must be low for the first cycle after <signal> goes HIGH.
SVA : assert property(@(posedge clock) (ARESETn == 1) |-> (AWVALID == 0)[*1];

Input spec: Recommended that AWREADY is asserted within MAXWAITS cycles of AWVALID
being asserted.

Re-written Spec: <signal> must be asserted within MAXWAITS cycles of <signal> being asserted.

SVA : assert property(@(posedge clock) (AWREADY == 1) |-> ##[0:MAXWAITS](AWVALID == 1));

Fig. 13. Analysis of rewritten spec led to SVA generation of specs with
unknown sentence structures/words.

Different order of words
Input Spec: A value of X on AWVALID is not permitted when not in reset
Re-written Spec: when not in reset, a value of X on <signal> is not permitted

SVA: assert property(@(posedge clock) !(reset) |-> AWVALID !=X);

Fig. 14. SVA for the re-written spec that covered all input concept_nodes.

We tested the framework by using input specifications from
AMBA 3 AXI Protocol Checker [17], and AMBA AXI4
Stream Protocol Assertions [18] documents. These spec doc-
uments have semantics similar to the specs of [15] but have
variations in sentence structures. We took natural language
specifications from [16] that have sentence structures and
vocabulary not covered by our grammar.

All the specifications in our test set had different sentence
structures and some words that were not defined in our
grammar. However, 71% of these test specifications had con-
cept_nodes with similar semantics as existed in our grammar.
As a result, the test set contained some specifications that can
be understood based on their rewritten form and some specs
needed more clarity in their meaning.

Lack of explicit antecedent and consequent structure
Input spec: the window between consecutive auto-refresh commands should be greater than tRFC
Suggestion 1: if <command> is issued then auto-refresh should be issued after <clock_name>

Suggestion 2: if <command> is issued then auto-refresh should be issued within <clock_name>

Fig. 15. Suggestion generation for the spec without standard antecedent-
consequent structure.

Unnecessary words used in the spec
Input spec: The SRAM write cycle time should be greater than the tWC mentioned in the specification.
Suggestion 1: SRAM write cycle should be greater than tWC

Input spec: the write pulse width is always greater than the minimum specified in the specification
(2 cycles).

Suggestion 1: write pulse width is always greater than 2 cycles.

Input spec: active to precharge must occur between tRASmin (5 clock cycles) to tRASmax (12000
clock cycles).

Suggestion 1: active to precharge must occur between tRASmin to tRASmax

Suggestion 2: active must occur within < clock_name > (< clock_value >)

Fig. 16. Unnecessary words removed from original spec in suggestions.

There were a total of 94 specifications in [17] and [18] that
had different sentence structures and words, but their semantics
were similar to the specifications in [15]. We used these 94
specs to test our framework.

The system was not aware of design variable names in
the input specifications. The suggestions framework rewrote
the specification with unknown design variables and added
a ‘< signal >’ category in these specs where it expected
a signal name, as shown in Figure 12. Instead of generating
suggestions, the system was able to unambiguously pick words
from the input spec that can replace ‘< signal >’ and
generated SVA in the output. We inferred correct design
variable names in all 94 specifications.

The test specifications contained non_concept words dif-
ferent from the words used in our grammar. An example is
illustrated in Figure 13. The system rewrote the input spec
with non_concept words of our system as shown in ‘Re-written
Spec’. Since the rewritten spec captured all the concept_nodes
of the input spec and the semantic role of input concept nodes
did not change in the rewritten spec, the spec was considered
semantically equivalent to the input, and an SVA code was
generated instead of a suggestion.

Similarly, in Figure 14, the system generated a rewritten
spec that contained all the input concept and non_concept
words with the same semantic roles. An SVA was generated
for this spec with different order of words.

Results Analysis: All 94 specs had design variables un-
known to our system. Of these specs, 41% had different order
of phrases as shown in Figure 14 and 59% of specs had dif-
ferent words as shown in Figure 13. By manual validation, we
verified that all the suggestions were correct and semantically
close to the intent of the input suggestion.

In contrast to above test set, we used 38 specifications of
memory controller that had more unknown words and different
concept words that were not defined in our grammar. For
example, as shown in Figure 15, the spec does not have explicit
antecedent and consequent phrases. The system was able to
generate suggestions explaining the required conditional struc-
ture, as shown in Figure 15. Moreover, the system was able
to remove unnecessary words from specifications to generate
semantically accurate suggestions, as shown in Figure 16.

Results Analysis: Of all the 38 specs, 55% had unknown
words and 45% had different sentence structures. Our ap-
proach generated suggestions for all the 38 specs. Manual
inspection of suggestions has showed that 60% of the sug-
gestions were semantically close to user’s intent like the
suggestions in Figure 16. In the other 40%, the system was
able to explain the sentence structural requirements to the user
as shown in Figure 15.

The system translated 71% of the entire test specifications
to SVA without requiring any changes in the input spec. The
framework generated suggestions for the remaining 29% specs
that required more clarity from the user. Overall the system
generated either SVA of the rewritten spec or semantically
close suggestions for 87% of the entire test specifications.

VI. CONCLUSIONS

We presented a framework for automatically generating
suggestions by rewriting the input spec into CNL acceptable
sentences with semantics closer to the user’s intent. The
framework was evaluated on specifications that had words and
the order of words not defined in our grammar. The system
generated useful suggestions for 8§7% of the input specs.
Moreover, the rewritten specs generated by the suggestions
framework provided additional analysis capability to improve
the flexibility in understanding specifications.

REFERENCES

[1] S. Ray, I. G. Harris, G. Fey, and M. Soeken, “Multilevel design under-
standing: from specification to logic,” in 2016 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). IEEE, 2016, pp. 1-6.

[2] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L.-C. Wang, “Challenges
and trends in modern soc design verification,” IEEE Design & Test,
vol. 34, no. 5, pp. 7-22, 2017.

[3] B. Keng, S. Safarpour, and A. Veneris, “Automated debugging of

systemverilog assertions,” in 2011 Design, Automation & Test in Europe.

IEEE, 2011, pp. 1-6.

E. Ebeid, F. Fummi, and D. Quaglia, “Hdl code generation from

uml/marte sequence diagrams for verification and synthesis,” Design

automation for embedded systems, vol. 19, no. 3, pp. 277-299, 2015.

[5] M. Leite and M. A. Wehrmeister, “System-level design based on
uml/marte for fpga-based embedded real-time systems,” Design Automa-
tion for Embedded Systems, vol. 20, no. 2, pp. 127-153, 2016.

[6] R. Krishnamurthy and M. S. Hsiao, “Bingo: A dependency grammar
framework to understand hardware specifications written in english,”
in Proceedings of the Sixth International Conference on Dependency
Linguistics (Depling, SyntaxFest 2021), 2021, pp. 68-80.

[71 T. Kuhn and R. Schwitter, “Writing support for controlled natural
languages,” in Australasian Language Technology Association Workshop
2008, vol. 6, 2008, pp. 46-54.

[8] S. Palmaz, M. Cuadros, and T. Etchegoyhen, “Statistically-guided con-
trolled language authoring,” in 5th International Workshop, CNL 2016,
Aberdeen, UK, July 25-27, 2016, 2016, pp. 37-47.

[9] K. Angelov and M. B. Mechura, “Editing with search and exploration

for controlled languages,” in Proceedings of the Sixth International

Workshop, CNL, 2018, pp. 1-10.

F. Hielkema, C. Mellish, and P. Edwards, “Evaluating an ontology-driven

wysiwym interface,” in Proceedings of the Fifth International Natural

Language Generation Conference, 2008, pp. 138-146.

M. S. Hsiao, “Automated program synthesis from object-oriented natural

language for computer games,” in Proceedings of the Sixth International

Workshop, CNL, 2018, pp. 71-74.

M. Hsiao, “Multi-phase context vectors for generating feedback for

natural-language based programming,” in Proceedings of the Seventh In-

ternational Workshop on Controlled Natural Language (CNL 2020/21),

2021.

B. Chen, L. Sun, X. Han, and B. An, “Sentence rewriting for semantic

parsing,” in Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Berlin,

Germany: Association for Computational Linguistics, Aug. 2016, pp.

766-777. [Online]. Available: https://aclanthology.org/P16-1073

T. Mitamura and E. Nyberg, “Automatic rewriting for controlled lan-

guage translation,” in The Sixth Natural Language Processing Pacific

Rim Symposium (NLPRS2001) Post-Conference Workshop, Automatic

Paraphrasing: Theories and Applications, 2001.

ARM, AMBA 4 ACE and ACE-Lite Protocol Checkers User

Guide., 2012, https://developer.arm.com/docs/dui0576/b/ace-and-ace-

lite-protocol-assertion-descriptions.

S. Vijayaraghavan and M. Ramanathan, “Sva for memories,” in A

practical guide for SystemVerilog assertions. Boston, MA: Springer

US, 2006, ch. 5, pp. 191-232, https://doi.org/10.1007/0-387-26173-7_6.

[17] ARM, AMBA 3 AXI Protocol Checker User Guide, 2006.

[18] ARM, AMBA 4 AXI4, AXI4-Lite, and AXI4-Stream Protocol Assertions

User Guide., 2010.

4

=

[10]

(1]

[12]

[13]

[14]

[15]

[16]

