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Abstract—Generalised fundamental mode is an important
timing assumption for implementing digital circuits, where the
environment is assumed to wait for the circuit to stabilise before
producing new inputs. In particular, Burst-Mode (BM) timing
assumption states that the circuit must wait until a complete input
burst has arrived and the environment must wait until a complete
output burst is produced. However, this timing assumption may
be difficult to enforce in a distributed environment, if each part
only observes a subset of the circuit’s output burst.

In this paper, we address the above by proposing two for-
mal modelling methodologies: 1) Design by Signal Transition
Graphs (STGs), and 2) Design by our new model called Burst
Automata (BAs). STGs are flexible as they express many be-
haviours, while BAs extends the BM methodology and enables
interoperability between many different models. Our experimen-
tal results show improved synthesis success rates and significant
reduction in literal count.

Index Terms—burst-mode, speed-independence, distributed en-
vironment, signal transition graphs, burst automaton

I. INTRODUCTION

Asynchronous circuits are a promising type of digital circuit
that removes the use of a global clock signal in favour of
local synchronisation between their components [1], resulting
in many benefits including lower latency and lower power
consumption [2], as well as resolving a host of clock-related
issues like clock skew [3]. Notably, the operation mode of
asynchronous circuits can be classified based on the timing
assumptions made about the delays between their components
and their interaction with the environment.

Generalised fundamental mode is a well-known circuit
operation mode, where the environment is assumed to wait
for the circuit to stabilise before producing any new inputs.
In particular, fundamental mode can be classified as single
input change or multiple input change, where the former forces
sequential inputs but restricts the circuit’s operation speed,
while the latter allows one or more input changes after circuit
stabilisation but makes the circuit more difficult to implement.

As a trade-off between the two modes, the BM timing
assumption [4] was proposed, where signals may change in
groups called bursts and are allowed to arrive in any order
and time. Each burst consists of a non-empty set of inputs
that precedes a finite set of outputs, such that the circuit must
wait until a complete input burst has arrived before it produces
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any outputs and transitions to a different state. In turn, the
environment must also wait until a complete output burst has
been produced before it can send any new inputs. Note that
BM-designed specifications must be well-formed where:

‚ Bursts must not contain an empty set of inputs.
‚ A given state must always be entered with the same input

burst (unique entry condition).
‚ No input burst from a state can be a subset of another

burst from the same state (maximal set property).
However, there are some caveats with the BM design. Namely,
BMs cannot specify neither input-output concurrency nor
choices between outputs (e.g. mutex), and their timing assump-
tion may be difficult to enforce in a distributed environment, if
each part only observes a subset of the circuit’s output burst.
This in particular makes composition and decomposition of
BM specifications difficult, as signals are produced in bursts
and the environment is assumed to be one. Moreover, while
BM’s maximal set property ensures specifications cannot enter
an undetermined state, it also forbids non-deterministic (in the
sense of language and automata theory) specifications.

Extended Burst-Mode (XBM) [5] was later proposed to
enable input-output concurrency for BMs by introducing con-
ditionals and directed “don’t cares”. Conditionals are level-
sensitive inputs that determine a system’s control flow based
on their sampled values, while directed “don’t cares” are
monotonic signals (i.e. signals that only changes once), which
are relatively slowly and may take several cycles to switch
but enables input-output concurrency. Like BM-designed spec-
ifications, XBM-designed specifications must also be well-
formed where the above and following properties are held:

‚ Bursts from the same state must have unique conditional
values, or their input set (including “don’t cares”) is not
a subset of another burst (distinguishability constraint).

‚ Every burst must contain a compulsory input (i.e. an input
that does not appear nor terminate as a “don’t care”).

‚ All directed “don’t cares” must toggle the signal when it
terminates (i.e. if the signal was `/´ before appearing
as a “don’t care” then it must next terminate with ´/`).

Still, XBMs cannot specify choices between outputs, and the
issue with their inherent BM timing assumption in a dis-
tributed environment remains. Furthermore, their distinguisha-
bility constraint also forbids non-deterministic specifications.

Another well-known circuit operation mode is input-output
mode, where inputs and outputs are said to be concurrent,
and the environment is allowed to respond to a circuit’s



outputs without any timing constraints. In particular, Speed-
Independent (SI) circuits [6] are an important class of asyn-
chronous circuits that work correctly in input-output mode
regardless of gate delays, and all wire delays are assumed
to be negligible (or shorter than any gate delay). In Quasi-
Delay-Insensitive (QDI) circuits [7], the assumption about
wire delays is relaxed by requiring that (some) wire forks
are isochronic, i.e. the maximal difference in delays from
the root of the fork to the ends of its branches is negligible
(or shorter than any gate delay). Intuitively, the isochronic
fork assumption means that the fork can be characterised by
a single delay, which conceptually can be appended to the
driving gate’s delay, making QDI very similar to SI. Thus,
these two modes do not have to be distinguished for this paper.

Signal Transition Graphs (STG) [8], [9] are a formal model
that can be synthesised into SI circuits. STGs are Petri
Nets [10] whose transitions are labelled by the rising and
falling edges of signals, where signals can be subdivided
into inputs, outputs, internals, and dummies with the latter
behaving like the empty word ε in language theory. STGs
are known for their flexibility as they can specify input-
output concurrency, choices between any types of signals, and
non-determinism. STGs are easy to compose and decompose,
especially when using high-level asynchronous concepts [11],
and enjoy good tool support for synthesis and verification from
established tools like PETRIFY [12] and MPSAT [13], which
are both integrated in the visual framework WORKCRAFT [14].

In this paper, we address the issues of BM timing assump-
tion in a distributed environment, and extend the BM method-
ology to handle distributed systems. To achieve this, BMs have
been generalised to a model called Burst Automata (BAs).
Unlike BMs, BAs are a proper extension of Finite State Ma-
chines (FSMs), which allows them to capture input-output con-
currency and other behaviours that are inherent in distributed
systems. The proposed methodology has been implemented as
a plugin for WORKCRAFT. By developing a translation from
BAs to STG, we enable interoperability between many types
of models including BMs, BAs, STGs, and FSMs.

The contents of this paper includes a simple example that
highlights the issues of BM timing assumption in a distributed
environment (Section II), design of the simple example using
an STG and a BA with details on the translation from BAs
to STGs (Section III), and experimental results that show a
significant reduction in literal count when specifications are
designed as an STG rather than as an XBM (Section IV).

II. MOTIVATION

In this section, we highlight the issues of BM timing
assumption in a distributed environment. Here, we provide
a simple example consisting of a controller with a two-part
environment called left and right respectively in Figure 1.
Part 1a shows the example as a circuit block diagram, while
part 1b shows it as three separate XBM models that commu-
nicate with each other via common signals. For simplicity, we
have omitted details about the reset phases of all signals, and
assume input go is asserted by another part of the environment.

(a) Circuit block diagram (b) BM fragments

Fig. 1: Simple example of controller and two-part environment

Firstly, let us consider the scenario where the environment
is one, i.e. the environment is not distributed and consist of
both the left environment and right environment. When the
controller receives input go+, it can produce its outputs lr+
and rr+. Following the BM timing assumption, the controller
must then wait until it receives the next input burst (i.e. inputs
la+ and ra+) from the environment, which the environment
only produces after receiving lr+ and rr+ from the controller.

Now, let us consider the scenario described above where
the environment is split into two, i.e. the environment is dis-
tributed, and both the left environment and right environment
are no longer aware of each other. Suppose the controller has
already received its input go+ and only produces output lr+
from its output burst lr+, rr+ due to rr being slower than lr.
Then, it is possible for the left environment to receive lr+ early
and produce la+ before the right environment even receives
rr+, as the left environment does not know anything about the
right environment. This in particular causes two issues:
1) Violation of BM timing assumption: Given that the
left environment can receive lr+ and produce la+ before the
controller finishes producing rr+ for the right environment, this
contradicts the BM timing assumption where it is assumed the
environment must wait until the circuit stabilises (i.e. finishes
producing its output burst) before producing a new input burst.
2) Early arrival of inputs that are not yet expected: Let us
assume that the controller’s output rr was not delayed, and
that the right environment has received its input rr+ but has
not yet produced its output ra+. If the controller receives its
next input burst from another part of the environment (e.g.
la+ from left) and produces a subsequent output burst that
can trigger the right environment to change (e.g. rr-), then this
will cause right to unexpectedly receive another input before it
even completes producing its output ra+ causing an incorrect
behaviour. Note that the controller is aware of all parts of the
environment, meaning it can receive signal(s) from one part
of the environment and send signal(s) to another part.

To avoid the two issues that are described above, one might
consider globalising the BM timing assumption assumption
for the whole environment. However, there is no easy way
to force parts of the environment to wait for other parts of
the environment, as these parts could have been designed
independently from each other and may not even necessarily



be an XBM. This means one cannot simply synthesise the
XBM and all parts of the environment separately, and then
just connect them without requiring some higher level of syn-
chronisation. Alternatively, one might consider decomposing
the problematic signals (e.g. the controller’s output burst lr+,
rr+) such that signals from one part of the environment is no
longer expected to wait for signals from another part of the
environment. However, this decomposition cannot be done for
the BM methodology, as it assumes the environment is one
where signals must be produced in bursts and output bursts
can only be produced after the arrival of an input burst. Note
that the method in [15] can decompose XBMs, although this
decomposition is based on the number of reachable cycles
that can be found meaning bursts are not decomposed and the
environment is still assumed to be one.

Despite one may argue that it is too troublesome to use a
distributed environment rather than its centralised counterpart
and that one can simply just design the environment as a
single model, there are still many benefits that a distributed
environment can provide over their centralised counterpart.
For example, suppose that the distributed environment behaves
correctly and that it confirms with its given specification (i.e.
the environment will not produce any unexpected signal for the
specification). Then, the benefits that one can achieve includes:
1) Smaller-sized Models: Like correctness of a model, it is
also important to ensure that the model is easy to understand
and manageable for a designer, especially when an issue
arises. For example, if there was an issue with one part of
an extremely large environment, then the designer must check
every part of the environment to identify the problematic
part. Thus, by splitting the environment into several parts, it
becomes easier for the designer to identify the problematic part
as each part becomes independent of each other. Additionally,
if one still requires a centralised environment, then one may
compose all parts of the environment accordingly.
2) Localised timing assumptions: By splitting the environ-
ment, each environment part now only manages the timing
of its own signal changes without needing to wait for the
signal changes by the other parts of the environment. This
in particular enables input-output concurrency, as different
parts of the environment may begin producing their own
outputs without waiting for the inputs by other parts of the
environment. Moreover, this can help optimise the speed of the
environment, as there is no longer a timing constraint between
the environment parts that may only be partially dependent on
each other.

III. DEBURSTING BURST-MODE SPECIFICATIONS

In this section, we address the two issues that were identified
in our simple example, where it was possible that the BM
timing assumption can be violated and that inputs may arrive
too early such that they are not yet expected, by proposing to:

1) Design specifications by using the traditional STG model.
2) Design specifications by using our proposed BA model,

which extends the BM methodology.

(a) STG fragments (b) BA fragments

Fig. 2: Simple example designed with other models

A. Design by Signal Transition Graphs

As described in Section I, STGs are known for their
flexibility as they can easily specify input-output concurrency,
choices between any types of signals, and non-determinism,
while also being supported by well-established tools PETRIFY
and MPSAT. Additionally, STGs are also easy to compose and
decompose, making synchronisation and desynchronisation of
signals, like outputs lr+ and rr+ in the simple example, trivial.

To illustrate the benefits of the STG model, Figure 2a
shows the same simple example from Section II designed as
an STG. Visually, one may notice the structure of the STG
model strongly resembles their XBM counterpart, with the
only differences being that STG transitions are not grouped
into bursts (though, one can interpret them as explicit bursts),
and that places corresponding to states are made implicit, if
the place has exactly one incoming arc and one outgoing arc
(e.g. the places corresponding to state s1 was made implicit).
Semantically, STGs have richer behaviour than XBMs, as they
can express behaviours that XBMs can express (e.g. XBM’s
well-formedness properties) and behaviours that XBMs cannot
express (e.g. non-determinism and output choices). Thus, this
makes STGs more desirable than XBMs, as they have a
simpler design and can express more behaviours. Moreover,
STGs are not constrained by the BM timing assumption
meaning it can avoid the two issues that are described above.

B. Design by Burst Automata

Before discussing the design of BAs, it is important that we
first provide their formal definition.

A BA can be defined as a tuple B “ pΣ, S,A, s0q where:
‚ Σ is an alphabet of atomic actions.
‚ S is a finite set of states.
‚ A Ď S ˆ 2Σ ˆ S is the set of arcs.
‚ s0 P S is the initial state.

Unlike XBMs, BAs can be interpreted as Finite State Ma-
chines (FSMs) [16] with arcs that label sets of actions
including the empty set (H). In the definition above, the
alphabet is not partitioned into inputs and outputs, and no
directions (` or ´) are assigned to the actions. Instead, they
can be viewed as refinements of the BA, where the BA can
just be seen as a generic model. Additionally, there are no



restrictions like the maximal set property from BMs nor the
distinguishability constraint from XBMs, and arbitrary non-
determinism is allowed, i.e. it is possible for two distinct arcs
to originate from the same state and be labeled by sets of
actions, where these sets are in the subset relation or are equal.
Moreover, it is possible to have an empty set of actions as an
arc label, which can be interpreted as an ε transition. Thus,
one can see that BAs naturally extend FSMs, where the latter
are just BAs with its arcs labelled by singletons or H.

In XBMs, bursts are comprised of a set of inputs followed
by a set of outputs, while in BAs, these bursts can be modelled
by explicitating the intermediate state between when all inputs
have arrived and no outputs have been produced, i.e. a BA
needs two steps to fire an XBM-like burst. Note that the
graphical notation could hide this intermediate state and be
similar to the XBM notation. On the other hand, this allows
the possibility to mix inputs and outputs in the BA arc labels,
which in particular enables input/output concurrency.

To also illustrate the benefits of the BA model, Figure 2b
shows the same simple example from Section II designed as a
BA. Visually, one can see that the structure of the BA model is
exactly the same as their XBM counterpart. Indeed, the only
exception is that the intermediate state between the XBM’s
input burst and the XBM’s output burst is made explicit, as
explained above. Semantically, BAs are different from XBMs
and are in fact closer to the semantics of STGs, e.g. BAs
can express non-determinism (due to no maximal set property
nor distinguishability constraint, and modelling of H), and
both input-output concurrency and choices between signals
(due to their alphabet not being partitioned into inputs and
outputs, and their segregated bursts). Thus, this also makes
BAs more desirable than XBMs, as they can express much
more behaviours than XBMs, naturally extends FSM without
complicated semantics, and provides the same design as XBMs
with the option to fall back to XBM semantics as needed.
Furthermore, BA’s modelling of bursts allows outputs to be
properly desynchronised like in STGs, enabling composition
and decomposition of BAs.

C. Translating Burst Automata to Signal Transition Graphs

In addition to the benefits that BAs provide, it also provides
a framework that enables interoperability between different
models, e.g. one may translate FSMs like BMs and XBMs
into equivalent STGs and vice versa. Below, we present a
translation from XBMs to STGs through our BA framework,
which produces an STG that is exponential in size to the
original XBM in the worst case. Note that this worst case
scenario is rare for practical specifications, and that this
exponential explosion only occurs when there are many arcs
incoming to and/or originating from the same state and are
labelled with large bursts, e.g. if there are m incoming arcs and
n outgoing arcs labelled with non-empty bursts of cardinalities
k1, k2, . . . , km and k1

1, k
1
2, . . . , k

1
n then k1¨k2¨. . .¨km¨k1

1¨k1
2¨. . .¨

k1
n STG places are created. Furthermore, this translation does

not include any dummy transitions, which may be particularly
beneficial for verification and synthesis tools as there are fewer

or no ε-transitions to handle, e.g. MPSAT uses STG unfoldings
and preserves ε-transitions.

To begin, we provide an example of a simple BA that
contains a generic burst of a, b, c in Figure 3a to be translated.
Note that the steps for translating bursts with signals are
exactly the same as demonstrated in the following example,
but signals are instead translated into corresponding signal
transitions (e.g. inputs as input signal transitions and outputs
as output signal transitions).

(a) BA Burst (b) Transitions

(c) Places (d) Arcs

Fig. 3: Translation from BAs to STGs

Transitions (Figure 3b) For each arc a “ pu,D, vq P A in
the BA, a transition is created for every burst label element,
such that:

‚ If the arc’s label is tσ1, σ2, ..., σku, where k ě 1, then k
STG transitions labelled σ1, σ2, ..., σk are created.

‚ If the burst’s label is H, then an STG transition labelled
ε is created.

Thus, this defines

Ta :“

"

tpa, dq | d P Du if D ‰ H

tpa, εqu if D “ H

as the set of transitions that corresponds with a.
Places (Figure 3c) For every state s in the BA, a set of

places in the STG is created as follows. Suppose that the
bursts labelling the arcs incoming to s are In1, In2, . . . , Ink,
and the bursts labelling the arcs outgoing from s are
Out1, Out2, . . . , Outk1 , where k, k1 ě 0 and empty bursts are
encoded as tεu, a new place is created for each tuple in the
Cartesian product In1 ˆ In2 ˆ ¨ ¨ ¨ ˆ Ink ˆ Out1 ˆ Out2 ˆ

¨ ¨ ¨ ˆ Outk1 . If k “ 0 and k1 “ 0 then this Cartesian product
contains the empty tuple as the only element, and if s is the
initial state of the BA then the set of places that corresponds
with s are initially marked.

Arcs (Figure 3d) For each place p that corresponds with a
BA state s and a tuple pi1, . . . , ik, o1, . . . , ok1 q, the following
arcs are created:
1) From the ij-labelled transition (which may be ε-labelled

transition in case of an empty burst) in the jth incoming
burst to p, for each j P t1, . . . , ku.

2) From p to the oj-labelled transition (which may be ε-
labelled transition in case of an empty burst) in the jth
outgoing burst, for each j P t1, . . . , k1u.



D. Implementation of Extended Burst-Mode Features

Now, let us consider the translation of XBM components
described in [17]. There, the translation method shows that
conditionals are translated into elementary cycles with places,
which acts like locks to prevent the signal transitions from
firing after a compulsory input transition has fired, and “don’t
cares” are translated into explicitly delayed STG transitions,
where they are connected from the first burst they appear in
and are then connected to the burst they terminate in.

In BAs, we do not include conditionals and “don’t cares”
as they can be seen as XBM-exclusive features. Instead, we
independently translate both conditionals and “don’t cares”
using the method in [17] from our BA to STG translation,
and attach them to the resulting STG by connecting them to
the appropriate transitions and/or places of the corresponding
burst. Note that these connections are connected in the same
way that has been described in [17], and that the examples
shown there included dummy transitions, which our BA to
STG translation does not include. Indeed, by following the
transition contraction methods described in [18], one can see
that our BA to STG translation is a contracted variant of the
translation in [17], where all dummy transitions labelled as
forks and joins have been contracted.

One important exception to consider is the contraction of
dummy transitions that include read arcs, e.g. the read arcs that
are connected between the elementary cycle’s lock places and
the fork-labelled dummy transitions in [17]. Read arcs are a
shorthand expression for an arc connecting from a component
x to a component y and an arc connecting from y to x, which
is drawn as a line between two components (e.g. a line between
places/transitions and transitions/places in STGs). In [18], it
is stated one cannot contract a transition if it contains a read
arc. This means that one must modify the connection of these
read arcs to be connected to and from the corresponding
input transitions (which will not affect the firing order of
these inputs) instead of these fork-labelled transitions, before
they can be contracted. For an example of these translations,
Figure 4a shows the translation of conditionals and Figure 4b
shows the translation of “don’t cares”, where the top models
are XBMs and bottom models are STGs.

Another point of interest is the XBM’s empty output bursts.
In [4], [5], it is said that bursts with an empty set of
outputs are interpreted as “dummy outputs” to signify a system
change internally. For the XBM to STG translation in [17],
empty output bursts are translated into so-called fake output
transitions, where these fake outputs are inserted at every
input-only burst (usually starting with a ` transition), and its
opposite-edged transition is inserted after one of the inputs in
the input-only burst has toggled its value. However in BAs,
there is no need to translate empty output bursts. Indeed, these
empty output bursts are equivalent to the H-labelled arcs,
which can simply be interpreted as ε transitions and so, can
be excluded when the BA is translated into an STG (i.e. if
an input-only burst is followed by an input-output burst in the
XBM, then the input transitions of the input-only burst are

(a) Conditional

(b) “Don’t cares”

(c) Input-only burst with subsequent input change

Fig. 4: Translation of XBM components

connected to the input transitions of the input-output burst in
the STG). Although, there are still some scenarios where these
fake outputs are needed to avoid some potential complete state
coding (CSC) conflicts, e.g. when a signal transition x` (x´)
is directly followed by its opposite-edged transition x´ (x`).
Note that there must be no CSC conflicts for an STG to be
synthesised into a circuit. Thus, one can optionally include
these fake output transitions after the BA is translated into an
STG (though, it is also possible to include these fake outputs
during the translation process). Unlike [17], these fake outputs
have been mapped to one of the input transitions in the input-
only burst, such that the fake output will always appear in burst
that the mapped input appears in to ensure consistency. For
example, Figure 4c shows the translation of an input-only burst
where fake0` (fake´) is mapped to every in0` (in0´).



TABLE I: Literal Count Comparison

Literal Counts (+Overhead%)
Specification Sigs MINIMALIST/3D PETRIFY/MPSAT

ack-xbm-si 7 X / 26 (+37%) 24 (+27%) / 19
biu-dma2fifo 6 X / 44 (+92%) 24 (+5%) / 23
biu-fifo2dma 6 X / F 23 (+5%) / 22
c-element 3 5 / 5 5 / 5
concur-mixer 6 15 / 15 15 / 15
diffeq-alu1 8 49 (+59%) / 39 (+26%) 31 / 32 (+4%)
diffeq-mul1 6 X / 28 (+34%) 21 / 27 (+29%)
diffeq-mul2 6 X / 13 13 / 13
dme 6 21 (+50%) / 20 (+43%) 14 / 15 (+8%)
dme-fast 7 27 (+80%) / 27 (+80%) 20 (+34%) / 15
dram-ctrl 14 41 (+25%) / 40 (+22%) 37 (+13%) / 33
fifocellctrl 4 X / 10 (+12%) 11 (+23%) / 9
gcd-controller 10 X / 177 (+91%) F / 93
hp-ir 5 8 / F 8 / 8
hp-ir-it-ctrl 12 46 (+18%) / 39 40 (+3%) / 48 (+24%)
hp-ir-rf-ctrl 11 37 (+24%) / F F / 30
imec-alloc-outb 7 23 (+44%) / 21 (+32%) 16 / 17 (+7%)
martin-qelement 4 9 (+29%) / 9 (+29%) 7 / 7
nowick-basic 5 10 (+25%) / 10 (+25%) 9 (+13%) / 8
token-distributor 8 42 (+62%) / 39 (+50%) 28 (+8%) / 26
pe-send-ifc 8 81 (+66%) / 52 (+7%) 50 (+3%) / 49
po-sbuf-send-ctl 6 28 (+8%) / 31 (+20%) 26 / 26
pscsi-ircv 7 27 (+59%) / 27 (+59%) 19 (+12%) / 17
pscsi-isend 7 55 (+67%) / 61 (+85%) 33 / 33
pscsi-trcv 7 23 (+28%) / 23 (+28%) 19 (+6%) / 18
pscsi-trcv-bm 8 38 (+32%) / 35 (+21%) 29 / 33 (+14%)
pscsi-tsend 7 43 (+35%) / 45 (+41%) 46 (+44%) / 32
pscsi-tsend-bm 8 52 (+45%) / 50 (+39%) 40 (+12%) / 36
scsi-isend-bm 9 47 (+31%) / 50 (+39%) 43 (+20%) / 36
scsi-isend-csm 9 47 (+31%) / 50 (+39%) 42 (+17%) / 36
scsi-trcv-bm 9 55 (+38%) / 45 (+13%) 40 / 41 (+3%)
scsi-trvc-csm 9 46 (+65%) / 38 (+36%) 32 (+15%) / 28
scsi-tsend-bm 9 76 (+112%) / 50 (+39%) 36 / 39 (+9%)
scsi-tsend-csm 9 41 (+71%) / 36 (+50%) 33 (+38%) / 24
tangram-mixer 6 8 / 8 8 / 10 (+25%)
two-ticks-if 6 13 (+19%) / 11 12 (+10%) / 11
Average Overhead 38% / 33% 8% / 3%

IV. EXPERIMENTAL RESULTS

In our experiment, we used the listed benchmarks to com-
pare the literal counts of their synthesised result between
the XBM tools (MINIMALIST and 3D) and the STG tools
(PETRIFY and MPSAT via WORKCRAFT). All results that
have been synthesised by XBM tools are BM circuits, while
all results synthesised by STG tools are SI circuits. Our
benchmarks include specifications found in MINIMALIST [19],
[20] (concur-mixer, dme, dram-ctrl, hp-ir, token-distributor,
pe-send-ifc, pscsi, scsi, tangram-mixer) and in 3D [5] (biu-
dma2fifo, diffeq, fifocellctrl), as well as other specifications
from various publications (ack-xbm-si [21], biu-fifo2dma [5],
c-element [22], gcd-controller [23], imec-alloc-outbound [24],
nowick-basic [4], po-office-sbuf-send-ctl [25]). Note that all
published XBMs were translated into STGs using our BA
model, and all XBMs of published STGs were newly designed
using our WORKCRAFT plugin [17]. To ensure fairness, we
have also factorised the literal counts produced by MINIMAL-
IST and 3D using LOGIC FRIDAY (a graphical frontend to the
ESPRESSO logic minimiser [26]) before counting them, as they
were originally in the sum-of-products form.

In the table, from the leftmost column to the rightmost
column, we have included the name of the specification, the

number of signals in the specification, the literal counts of
the synthesised circuits produced by the XBM tools, and the
literal counts of the synthesised circuits produced by the STG
tools. Note that under the column MINIMALIST/3D, all literal
counts on the left side of the forward slash symbol (/) were
from the circuits produced by MINIMALIST and all literal
counts on the right side of the forward slash symbol were
from circuits produced by 3D. Similarly, under the column
PETRIFY/MPSAT, all literal counts on the left side of the
forward slash symbol were from the circuits produced by
PETRIFY and all literal counts on the right side of the forward
slash symbol were from circuits produced by MPSAT.

For each row, the smallest literal count is highlighted in
bold, and if a literal count is not the smallest in their row
then they are included with a percentage overhead over the
smallest literal count in their respective row. Additionally,
a result marked with an ‘X’ means that the tool was not
able to read the specification due to incompatible syntax, e.g.
MINIMALIST was developed to support both BMs and XBMs
but it only received support for the former and so it cannot read
the XBM extension, and a result marked with an ‘F’ means
that there was a synthesis failure. For example, let us consider
the third row that includes the specification biu-fifo2dma: Here,
the specification has 6 signals, and it could not be synthesised
with MINIMALIST due to an incompatible syntax nor 3D due
to a synthesis failure. On the other hand, the specification
could be synthesised with PETRIFY and MPSAT with a literal
count of 23 and 22 respectively. As the synthesis result by
PETRIFY was not the smallest, a percentage overhead is also
included. This is calculated by dividing the difference between
the non-smallest and smallest literal counts with the smallest
literal count, i.e. p23´22q

22 .
For the final row, the average overhead of each synthesis

tool is included. This is calculated by totalling the percentage
overhead of each column and dividing them by the tool’s total
number of successful synthesis results. For example, let us
consider the average overhead for 3D: Here, we total up all
the percentage overheads and divide them by the total number
of non-X and non-F results, i.e. p37`92`...`39`50q

p36´3q
.

When evaluating our experimental results, we found that
most of the specifications that were synthesised with PETRIFY
and MPSAT had a lower literal count than when they were
synthesised with MINIMALIST and 3D, despite many of them
originally being XBMs. In particular, simpler specifications
like c-element, concur-mixer, and nowick-basic shown little
to no improvement, as they were already the most optimal
result. However, more complicated specifications like dme-
fast, scsi-tsend-bm, biu-dma2fifo, and gcd-controller all shown
substantial improvements. Note that WORKCRAFT supports
both PETRIFY and MPSAT, so one can synthesise the spec-
ification with both tools and select the more optimal result.

Additionally, there were only a few specifications that re-
quired the implementation of fake outputs to be synthesiseable
with PETRIFY and MPSAT. These included biu-fifo2dma, pe-
send-ifc, po-sbuf-send-ctl, and two-ticks-if where they all had
a signal transition x` (x´) followed by an immediate signal



transition of x´ (x`), which causes a CSC conflict. This
suggests that fake outputs do not have to be implemented for
every empty output burst like it was stated in in [17].

Finally, all of the benchmarks could be synthesised as an
STG, when we used MPSAT. This suggests that most XBMs
can be designed as an STG and remain synthesiseable without
needing the BM timing assumption.

V. CONCLUSION

In this paper, we addressed the issues with BM timing
assumption in a distributed environment by proposing to: 1)
design specifications by using the traditional STG model, and
2) design specifications by using our proposed BA model,
which extends the BM methodology.

In our motivation, we provided a simple example of a con-
troller with a two-part environment and highlight the benefits
of a distributed environment over a singular environment. In
the simple example, the BM timing assumption was shown to
be violated if the controller’s output to the right environment
was slow, such that the left environment can proceed without
waiting for right. Additionally, we also highlight that it was
still possible that the right environment may not be ready to
receive its next input (e.g. if the controller’s output to right was
fast, but right was still producing its previous output burst).

Next, we then shown an STG and a BA of the simple
example, and highlighted their benefits over XBMs. STGs
are more flexible than XBMs providing both a simpler design
and more behaviours like input-output concurrency and non-
determinism, while BAs provides the same behaviours as
STGs and a framework that enables interoperability between
many types of models, e.g. translation from XBMs to STGs.
Details of translation from BAs to STGs were also covered
including step-by-step translations of each BA component
and each XBM-exclusive component, where the latter are
translated independently and then subsequently attached to
the resulting STG. Moreover, unlike XBMs, both BAs and
STGs are a true extension to FSMs, allowing them to easily
specify input-output concurrency and other behaviours from
distributed systems.

Lastly, experimental results demonstrate an improvement
to the synthesis success rate and a significant reduction in
literal count, when specifications were designed as STGs
instead of as XBMs. Furthermore, all specifications were still
synthesiseable as an STG (with MPSAT) suggesting most
BM specifications can be designed as an STG and remain
synthesiseable without the BM timing assumption.

Future Directions: We are considering further research into
the modelling of distributed environments, where we investi-
gate the possibility of allowing multiple timing assumptions
to co-exist.
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