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Abstract—Requirements in complex systems can quickly in-
troduce unforeseen inconsistencies or contradictions. This work
shows the use of discrete/continuous constraint propagation to
analyze the consistency of requirements models. The implemen-
tation checks representations using the SysMLv2 metamodel that
are generated by parsers for a SysMLv2 textual subset or the
proprietary language SysMD.

Index Terms—configuration, constraint propagation, automo-
tive, symbolic Al

I. INTRODUCTION

Information that is semantically integrating information
across the supply chain is a trend that will be dominating sys-
tems engineering processes and frameworks by the year 2035
[5]. This work in progress deals with constraint satisfaction-
and propagation (CS) techniques for consistency checking in
requirements models that are exchanged in the supply chain.
The constraint propagation is intended to support the creation
of consistent requirements models by showing contradictions
in models, supporting the specification consistent value-ranges
and units for parameters, assisting in the selection of suitable
variants. Particular focus is on the consistency checking of
SysMLv2/KerML models with CS.

A. Progress beyond state of the art

Several approaches use CS in the context of technical sys-
tems. A backtrack-free configuration approach for a domain-
specific language Configit-PM is explored in [3]. COM-
PASS [1] gives a model based approach based on SysML and
CML by refinement of (dynamic) state machine behavior.

This work aims at mapping a subset of SysMLv2’s KerML
representation to a CS problem. Compared with [3], [1], we
target KerML representations. Such models combine discrete
and continuous dependencies by a variety of modeling artifacts
including effect chains, direct dependencies of values, SI unit
support, and inheritance. The contribution of the work lies in
closing the gap between KerML models and methods for CS,
and finding CS methods that satisfy the needs for interactive
work, i.e. response times, introspection, reasonable feedback.

This paper is structured as follows: Section II gives an
overview of the overall framework. Section III demonstrates
small examples for discrete and continuous models that are
translated to KerML models. An outlook to future work is
given in Section IV.
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II. THE AGILA/SYSMD FRAMEWORK

The overall framework in which we deploy the constraint
propagation consists of two parts. The frontend, SysMD Note-
book, leans towards the popular Jupyter Notebooks. It allows
a user to mix natural-language documentation and documents
in the Markdown (MD) format with requirements models in
a subset of SysMLv2 textual or its own proprietary language
called SysMD. The backend, AGILA, holds a repository of
models. It implements services including version management,
user- and rights management, and the constraint network (CN)
for consistency checking. The frontend and the backend are
coupled via a service layer and/or via a REST API as shown
by Figure 1.
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Fig. 1. High-level architecture of AGILA/SysMD.

The SysMD compiler or, likewise the SysMLv2 [6] subset
compiler, translates models into objects from the KerML meta-
model [4]; an overview of the classes is shown by Figure 2.
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Fig. 2. SysMD/AGILA Implementation of the SysMLv2 metamodel.

In the backend, models are represented by objects of the
classes Documentation (Markdown; is rendered by the fron-
tend) and TextualRepresentation (language can be selected to
be SysMLv2 or SysMD). After compiling such an object, the
compiler generates interwoven trees of metamodel objects of
Relationship, Classifier rsp. Interface Classifiable, or Feature
(or, subclasses of these classes): The tree of Classifiable
objects models specializations with the object Anything as
root. A second tree models the ownership (owns/ownedBy)
relationship and a root-namespace Global.



III. CONSTRAINT PROPAGATION IN SYSMD

In a requirements model, we model dependencies among
different elements by arithmetic and Boolean expressions. In
SysMD they are of the form:

Name: [All|One] Type [(Constraint)] [Unit] [= Expr]

where Name is a name of a variable, Type a defined type;
currently we support Boolean, Integer, Real, String. Constraint
specifies upper and/or lower bounds for the expected value.
Unit is a SI or derived unit. Expr(ession) is a Boolean or
Arithmetic or mixed Boolean/Arithmetic expression on other
variables, multiplicities, or queries on the design structure. Al/
specifies that the expression must be satisfied for all values of
the Type with the given Constraint. One specifies that there
must exist at least one value that satisfies the expression; it is
the default.

A. Continuous constraint propagation

Example isA Component.

Example hasA
height:
width:

100) [em],
1.1) [n],
length: Real(l .. 1.1) [m],
volume: Real(l .. 2) [m"3] = height % width * length.

Example::height = 82.64463..100 cm

Real(l0 ..
Real(l ..

Example:width = 1..1.1m
Example:length = 1..1.1m
Example::volume = 1..1.21 m"3

Fig. 3. Example continuous constraint propagation in SysMD Notebook

An example propagation of continuous constraints can be
seen in Figure 3. The compiler uses the KerML classes
“Classifier” and “Feature” with value and expression. For the
CN we use the method of approximating and restricting the
possible solution space. For the approximation and restricting
the solution space, we use a combination of Interval Arith-
metic, AA, ROBDD, and linear programming; for details see
[2], [8]. Furthermore, consistency of units and its conversion
is checked.

B. Discrete constraint propagation

/' — Language: SysMD  Scape: Global
Example2 isA Package.
B Example2 hasA
a: Boolean = frue,
b: Boolean = true or false,
c: Boolean(true) = a and b.
Display shows Example2.
In Example2:
Example2::a = True
Example2::b = True
Example2::.c = True

Fig. 4. Example for discrete constraint propagation in SysMD Notebook

A discrete example can be seen in Figure 4; again, a
Classifier and 3 Feature classes with Expressions are used.
The discrete part of the CN uses the method of domain
reduction, where values that lead to inconsistent properties
are removed (which means the constraints imposed on the
domain are restricted). And a combination of different network
consistency techniques is used subsequently to propagate the
changes across the properties.

C. Mixed constraint propagation, Inheritance

Interactions between the discrete and continuous domain are
modeled by comparison operations and the ITE-function that
can select one of two Real/Integer parameters. The continuous
and the discrete domain then take alternating turns, where
according to the domain, solution space and variable domain
respectively are restricted and reduced respectively until a
fixed point is reached. The new state of one part of the network
is then used as input for the other part of the network and
possible changes are propagated by network consistency tech-
niques. The procedure is then repeated until again a fixed point
is reached. During this process new properties are generated
based on the results of the net that refine the model, without the
loss of valid solutions. Currently, the interaction between the
two parts of the constraint net at the two modelled interaction
points is the focus of this work in progress. Further interactions
between the parts such as Boolean logic expressions over reals
and integer (range) domains are researched.

Inheritance is handled in a separate step before the con-
straint net starts. It in particular requires cloning inherited
feature values that are written by the constraint nets.

IV. RESULTS AND FUTURE WORK

The current implementation allows us to check consistency
of KerML models that use inheritance (Classifier), Feature
Models (Feature) with multiplicities, and simple queries of
the backend. As of now, the runtime of the CN for models
with some hundred variables is negligible. In future work,
we plan to compare runtime with results for more complex
models from e.g. [7]. Furthermore, we still need improvements
regarding the integration of the discrete and continuous parts.

While the current work relies on analysis of decision
diagrams, more domain specific constraint solving techniques
for their respective domain and their interaction will need to
be researched regarding its usability for interactive work. This
in particular includes
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