
A Comparison of Virtual Platform Simulation
Solutions for Timing Prediction of Small RISC-V

Based SoCs
Felix Böseler, Jörg Walter, Behnam Razi Perjikolaei

OFFIS - Institute for Information Technology
Oldenburg, Germany

{felix.boeseler, joerg.walter, behnam.razi.perjikolaei}@offis.de

Abstract—In an electronic system level design flow, early
timing predictions can be realized by employing virtual platform
simulations in the transaction level abstraction. However, there
is little research comparing virtual platform solutions for small
RISC-V based System-on-a-Chip architectures. This paper tries
to fill this gap with a qualitative and quantitative comparison
focusing on timing prediction accuracy. Starting with a total list of
25 RISC-V simulators, we found that only three candidates fulfill
a comprehensive set of requirements for research applications.
For these candidates we performed a quantitative comparison in
which we model a single-master bus-based System-on-a-Chip at
different abstraction levels and measure each simulator’s timing
prediction accuracy and simulation speed.

Index Terms—transaction level modeling, virtual platform,
RISC-V

I. INTRODUCTION

A small application-specific System-on-a-Chip (SoC) usu-
ally executes fixed periodical processes and is used in many
devices, such as microwaves, washing machines, or even self-
driving cars [1]. Performant and reliable predictions of timings
in early SoC design phases can help to produce reliable
hardware while also enabling more productive hardware de-
sign workflows. With such timing predictions external time-
sensitive components, such as watchdogs, can be designed,
refined, and simulated in parallel with the SoC according to
an Electronic System Level (ESL) design flow (see [2]).

The so-called Transaction Level (TL) abstraction offers
possibilities for timing predictions in early design phases
by utilizing a more abstract modeling approach with Vir-
tual Platforms (VPs) than in the classic Register Transfer
Level (RTL) abstraction. Moreover, the RISC-V Instruction
Set Architecture (ISA) is particularly interesting because of
its modular/non-proprietary design and practical focus. This
allows a wide usage of this ISA in embedded systems in the
future and good ESL tool/simulator integration [3].

While the name TL suggests a fixed abstraction level, it is
a huge abstraction space [2] with no general all-encompassing

This work has been developed in the project VE-VIDES (project label
16ME0243K - 16ME0254) which is partly funded within the research program
ICT 2020 by the German Federal Ministry of Education and Research
(BMBF).

classification scheme (see [4] and [5]). Therefore, the officially
listed 25 simulation solutions from the RISC-V foundation [6]
which target the TL abstraction (called VP simulation solu-
tions in this paper) differ greatly in their supported modeling
abstractions and the resulting simulation speed.

Thus, in order to find an applicable VP for timing predic-
tions of small RISC-V based SoCs, a systematic comparison
of state-of-the-art VP simulation solutions is required. To the
best of the authors’ knowledge, such a comparison does not
exist yet. Furthermore, while this paper focuses on a special
class of SoCs, we hope that this paper sets an impulse for
further VP simulation solution comparisons.

The rest of this paper is structured as follows. Section II
presents related work. In Section III the qualitative comparison
is conducted followed by the quantitative comparison in Sec-
tion IV for a selected set of VP simulation solutions. Finally,
Section V concludes this paper and provides an outlook.

II. RELATED WORK

In [7] a qualitative comparison between the two popular
simulation solutions OVPsim [8] and QEMU [9] is given.
They also quantitatively examine the performance and ac-
curacy when different quantum sizes are employed in the
simulation. With a time quantum of 0.08ms they achieve an
11.66 times faster simulation execution compared to their own
cycle accurate CPU model while achieving a timing accuracy
of 54% for an image encoding task.

A very extensive quantitative examination of the timing
accuracy for different interconnect abstractions is given in
[10]. While the quantitative examination is very extensive, it
does not compare the limitations or capabilities of multiple
state-of-the-art VP simulation solutions.

The authors in [11] describe a case study regarding the
accuracy of TL simulations where an RTL implementation of
a watchdog timer is compared to its TL implementation.

Particularly interesting is the examination of a PicoRV32
core based system in [12] since it fits well into the motiva-
tion of small RISC-V based SoCs in this paper. The author
conducts quantitative accuracy examinations by comparing TL
simulation executions with real FPGA based executions of the
same system. However, the quantitative comparison does not
consider multiple TL abstractions or VP simulation solutions.978-1-6654-7332-3/22/$31.00 ©2022 IEEE

III. QUALITATIVE COMPARISON

Not all 25 simulation solutions officially listed as RISC-V
simulators at [6] target the TL abstraction. However, even the
solutions which target the TL differ considerably regarding
their specific supported abstractions. Therefore, we choose to
examine and compare the simulation solutions in two steps
in this section. First, we examine whether the solutions fulfil
essential requirements which ensure their practical free-to-
use employment for timing predictions in the TL abstraction.
After that, we conduct a comparison of the selected solutions
regarding their specific supported TL abstractions and support
of simulation speed optimizations, most notably temporal
decoupling.

A. Essential Requirements

We choose a general differentiation between VP simula-
tion solutions and TL modeling languages/frameworks, such
as SystemC TLM-2.0 [5]. A VP simulation solution offers
predefined configurable models, e.g., CPU models to ensure a
practical usability.

We do not consider so-called host compiled simulation
solutions (e.g., see [13]) since no strict hardware/software
partition is given. For host compiled simulation solutions
the software is annotated with delay constructs to reflect
hardware timings rather than being executed by an Instruction
Set Simulator (ISS) [13]. Because of practical reasons, we
also consider the accessibility of a simulation solution as an
important factor. Free-to-use simulation solutions offer a fast
and reproducible testability of their features and limitations.

Because of these reasons, we choose to examine the offi-
cially listed 25 simulation solutions at [6] with the following
essential requirements:
TL Abstraction The solution targets the TL abstraction.
Predefined Models The solution contains at least one config-

urable RISC-V CPU and interconnect model.
Timed Simulation The solution supports timed simulations

with timing synchronization of multiple components in
the same time domain.

Extensible The solution is extensible for custom components
and platforms.

Free-to-use The solution is free-to-use for non-commercial
applications.

We consider a simulation solution for further evaluation if
it fulfills these requirements. The results of the examination
can be seen in Table I. The first column shows the five es-
sential requirements while the second column lists simulation
solutions which miss a corresponding requirement.

Table I shows that many simulation solutions are untimed.
Simulation solutions such as [9] follow an untimed approach
for high performance and are also often considered as em-
ulators, while solutions such as [22] purely focus on the
untimed ISA simulation for educational purposes. We consider
the four solutions OVPsim [8], Renode [32], gem5 [33], and
RISC-V based Virtual Prototype [34] (from now on called
RISC-V VP) applicable. We did not include the simulation

TABLE I
ESSENTIAL REQUIREMENTS AND SIMULATION SOLUTIONS WHICH DO NOT

SATISFY THEM (NON-EXHAUSTIVE)

Requirement Solutions without requirement support
TL Abstraction FireSim [14]
Predefined Models

Timed Simulation

QEMU [9], riscv-vm [15], TinyEMU [16],
riscv-rust [17], jor1k [18] terminus [19],
Spike [20], SweRV-ISS/Whisper [21], Ripes
[22], vulcan [23], WebRISC-V [24], Emul-
siV [25], RARS [26], Jupiter [27]

Extensible riscvOVPsimPlus [28]
Free-to-use BRVT [29], PQSE [30], VLAB [31]

solutions MARSS-RISCV (Micro-ARchitectural System Sim-
ulator - RISCV) [35] and DBT-RISE-RISCV [36] for this
examination as it was not possible to sufficiently evaluate their
features and limitations for us due to a lack of documentation.

B. Modeling Styles

If an SoC designer deviates from the intended modeling
style of a simulation solution, it causes an infeasible amount
of modeling work. Naturally, the amount of work which
an SoC designer considers infeasible must be defined for
different use cases. In the case of this paper, we consider it
infeasible to entirely re-implement CPU models or intercon-
nect/communication structures as they generally exhibit a high
complexity. We expect a VP simulation solution to provide
sufficient configurability for predefined CPU and bus models
to be usable for the simulation of different small SoCs.

The employed modeling style classification scheme is
shown in Fig. 1 where each cell corresponds to a modeling
style. As in [4] and [37] we choose a two axes classification
scheme. We introduce the Instruction Delay Abstraction (IDA)
for the y-axis since we defined the modeling styles, besides
the predefined interconnect capabilities, through the predefined
CPU model capabilities.

Nominal
duration

Transaction

Interconnect Abstraction (IA)

In
st

ru
ct

io
n

D
el

ay
 A

bs
tra

ct
io

n
(ID

A)

Untimed

read/write

Read/write

RISC-V VP

Renode

gem5

Atom

Bus protocol aware
 Bus protocol agnostic

Higher
abstraction

Microarchitecture
estimation

gem5 gem5 OVPsim

Higher abstraction

Per instruction
type

Fig. 1. Two-axes modeling style classification scheme for the VP simulation
solutions OVPsim, Renode, RISC-V VP and gem5

In the lowest IDA (microarchitecture estimation IDA), CPU
models include some microarchitecture details (e.g., a generic
pipeline model with execution stage timings) but without
constituting a full RTL CPU model. The per instruction
type IDA only allows fixed instruction execution delays per

instruction type. Finally, the nominal delay IDA only allows
the configuration of one nominal instruction execution delay
for all instructions.

The x-axis of the classification scheme in Fig. 1 describes
the interconnect abstraction. The synchronization granularity
defines on which boundaries timing information and data is
exchanged/synchronized.

The popular SystemC TLM-2.0 coding styles Loosely Timed
(LT) and Approximately Timed (AT) describe programming
language idioms rather than pure interconnect abstractions [5].
Thus, we opt to use a similar but more general definition of in-
terconnect abstractions based on [38]. They differentiate non-
repeatable phases called atoms in a transaction. Typical atoms
are, for instance, Init, Data Handshake, and Finalization. We
define the atom Interconnect Abstraction (IA) and transaction
IA in the classification scheme on the lower abstraction end
in Fig. 1.

Instead of a signal projection to generic transaction at-
tributes which preserves bus protocol specific semantics, one
can rely on protocol agnostic read/write accesses. For instance,
with such an approach a wrapping burst transfer cannot be
modelled as one transaction but must be modelled through
multiple bus accesses. Renode and OVPsim use this abstrac-
tion. Therefore, we introduce the interconnect abstractions
read/write IA and untimed read/write IA in Fig. 1. The
synchronization also takes place on transaction boundaries.
However, in the untimed read/write IA no timing synchro-
nization is allowed.

Fig. 1 shows that Renode and OVPsim both target mod-
eling styles with a nominal delay IDA. In both solutions
the predefined CPU models take nominal Million Instructions
per Second (MIPS) values for configuration. We notice that
both solutions use a Dynamic Binary Translation (DBT)
approach. For OVPsim we only consider free usable features
and therefore do not include commercial features which can
add microarchitecture estimation features to the CPU model.

RISC-V VP offers a 32-bit and 64-bit RISC-V CPU model,
which supports the most common RISC-V extensions. As
shown in Fig. 1 the solution focuses the per instruction type
IDA allowing a configuration of instruction execution delays
per instruction type. We only consider the officially published
RISC-V VP version at [34]. The solution gem5 offers four
major CPU models [39] from which the simple and minor
CPU models are important for this paper. The simple CPU
model targets the nominal delay IDA while the minor CPU
model focuses the microarchitecture estimation IDA.

C. Temporal Decoupling

Table II shows the support of temporal decoupling for
the VP simulation solutions OVPsim, Renode, RISC-V VP,
and gem5. The second column describes the granularity of
the decoupled modelled process in a VP. Since RISC-V VP
is based on SystemC, the granularity is a SystemC thread.
The solution gem5 only supports temporal decoupling for
nodes in a distributed (network) system [39]. In OVPsim the
granularity is based on the so-called virtual machines, which

TABLE II
TEMPORAL DECOUPLING SUPPORT FOR THE EXAMINED VP SIMULATION

SOLUTIONS

Solution Granularity Execution
RISC-V VP SystemC thread Sequential

gem5 Node in distributed system Concurrent
OVPsim Component (OVPsim virtual machine) Sequential
Renode Hierarchical time sinks/sources Selectable

usually correspond to one modelled component (e.g., CPU or
peripheral) [40]. Renode supports temporal decoupling based
on hierarchical time sources and sinks which can have different
time quantum sizes [41].

The third column in Table II shows the concurrent execution
support for temporal decoupling. While OVPsim in the free
version and RISC-V VP only support a sequential execution,
Renode and gem5 support a concurrent execution.

Based on Table II we conclude that OVPsim and RISC-V
VP have a very similar temporal decoupling support. However,
in OVPsim all event executions are statically planned for a
time quantum. The concrete time quantum sizes are dynami-
cally adapted based on scheduled events since events can only
be executed on quantum boundaries [40].

IV. QUANTITATIVE SIMULATOR COMPARISON

In this section we conduct a quantitative comparison regard-
ing timing prediction accuracy and simulation speed based on
a case study. We choose the simulation solutions OVPsim,
RISC-V VP and gem5 because of their timed interconnect
abstraction support, which we consider crucial for accurate
timing predictions (see Fig. 1).

A. Ground Truth

Fig. 2 shows the structure of the SoC which we use
for comparing the timing accuracy and simulation speed of
different simulation solutions. The SoC is a modified version
of the PicoSoC from [42] and is described in Verilog, thus
providing cycle-accurate timings, which we use as the ground
truth for the comparison. The microarchitecture of the CPU
features no pipelining and only a single speculative linear
instruction prefetch per instruction.

As shown in Fig. 2, we use a Serial Peripheral Interface
(SPI) based flash device as program memory to resemble a
typical microcontroller setup. In contrast to the SRAM, which
only has a configured latency of 1 cycle for any access, flash
device accesses have considerably higher latencies of up to
7 cycles for sequential accesses (depending on prefetch time)
and fixed 22 cycles for random accesses. The hardware-based
implementation of the SHA-1 cryptographic hash function
as memory-mapped device serves the role of an external
peripheral. This allows us to look at VP timing and synchro-
nization behavior with external system components. For the
interconnect bus protocol we employ the minimal PicoRV32
native memory interface as the PicoRV32 does not support
bus-pipelining capabilities or burst transfers.

SPI-controller

SRAM

Flash
memory
 Bus

PicoRV32 CPU

SPI

0x0100_0000 - 0x01FF_FFFF

SHA1 peripheral

0x0000_0000 - 0x00FF_FFFF

0x0400_0000 - 0x0400_00FF

mem_wdata
32

32

32

4

mem_rdata

mem_addr
mem_wstrb
mem_ready
mem_valid
mem_instr

PicoRV32 core

PCPI mul
core

PCPI div
core

Pico Co-Processor

Interface (PCPI)

Instruction memory

Console

0x0500_0000 - 0x0500_0003

PicoRV32 native memory
interface

Fig. 2. Ground truth SoC structure based on the PicoRV32

The firmware consists of two alternatingly executed pro-
cesses and a co-operative round-robin scheduler. We call each
alternating process execution an execution cycle. The first
process computes the Dhrystone benchmark [43] to simulate
a common system workload. The second process sends input
vectors to the SHA-1 peripheral device described in the
previous section and then polls until results are ready. This
firmware resembles a common workload for small SoCs in
which we want to monitor the execution cycle timings as
described in Section I to detect anomalies. We compile the
firmware with the official RV32IMC GCC toolchain, thus
supporting compressed instructions.

For the ground truth timings we measure the cycle-accurate
execution times of eight execution cycles for each process
with continuously and uniformly increasing durations in an
RTL simulation (i.e., 16 execution cycles altogether). The
increasing cycle times make it possible to evaluate the timing
prediction accuracy of the VP simulation solutions for different
observation frame sizes. The cycle times of two consecutive
process executions (Dhrystone followed by the SHA-1 pro-
cess) are very similar (relative difference smaller than 6% for
all eight cycle increments). We delimit the execution cycle
timings though program counter changes in generated value
change dump files.

B. Measurement Approach

1) Variants: We define 16 variants for the quantitative
comparison based on a trade-off between the following con-
siderations:
Abstraction coverage We want to cover a broad space for the

quantitative comparison to evaluate the timing prediction
accuracy of VPs on different abstraction levels.

Feasible realization A modeling style may restrict the real-
izability of a variant to a certain extent. We focus on
variants with a broad feasible realizability in the modeling
styles of the VP simulation solutions.

Comparability We want to realize similar variants in different
simulation solutions so that a direct comparability of the
timing prediction accuracies is given.

As a base for all variants, we assume an additive behavior
of time induced by instruction execution delays in the CPU
model and the transaction communication delays. The com-
munication delay includes the data transfer time and target
latency regarding SystemC TLM-2.0 terminology [5]. Such
an assumption is realistic for a non-pipelined CPU like the
PicoRV32 since memory accesses generally cause a stall.

We organize our benchmark variants in two dimensions:
Computation and communication delay abstractions (shown
in Fig. 3 where each cell corresponds to a variant). Besides
the aforementioned trade-off approach, we chose the abstrac-
tion levels based on observations in initial experiments. The
abstraction levels represent the most important factors that
influence timing behavior and performance. For the compu-
tation delay abstraction, we define four classes that differ
by how detailed individual instruction delays are modeled.
These classes range from a single averaged delay (1C class)
to individual delays for each instruction type (AC class).
Intermediate classes group instructions depending on whether
they are multiplication, memory access, branching (for 4C
class but not for 3C), or other instructions.

For the communication delay abstraction we define four
classes that differentiate between types of peripheral accesses.
The DIFF class is the most detailed class and has separate
delays for program memory accesses (sequential and random)
and SRAM/peripheral accesses. The DEL class uses a single
delay for program memory while the MEMO class merges pro-
gram memory delays into the computation delays (average).
Finally, the ZERO class uses a single global average delay
merged into the computation delay value(s) of all instructions.

RISC-V VP offers a feasible realizability of all variants
while OVPsim only supports two variants with a high ab-
straction (depicted through the colored rectangles in Fig. 3).
In gem5 we differentiate between gem5 with the simple
CPU model and the minor CPU model as the minor CPU
model supports more variants. The defined variants target
an abstraction level comparable to the LT coding style in
SystemC TLM-2.0 because of the trade-off approach (feasible
realizability and comparability).

2) Comparison Workflow: Fig. 4 describes the comparison
workflow. First, we select all supported variants as shown in
Fig. 3 for a simulation solution and iterate over them. The next
instantiation step constructs a concrete VP from the timing
characterization data and the current selected variant.

After this, we conduct a search over a range of time quantum
values (quantum search) to find the biggest value which
does not influence the timing accuracy in order to receive
realistic simulation speed measurements. We run each variant a
hundred times in a Linux-based virtual machine and calculate
the average to determine the simulation time. The repeated
executions are only required for the reliable measurement of
simulation time since the simulated execution cycle durations
are deterministic. Finally, we calculate the timing accuracy by
comparing the simulated execution cycle timings in the VP
with the ground truth. Note that we examine the variants for
gem5(simple) and gem5(minor) separately.

gem5
(simple)

gem5
(minor)

RISC-V VP

OVPsim

Higher abstraction
Differentiation

None

Multiply/division
Load/store
Other

Multiply/division
Load/store
Branch

Other

Every type

Name

1C

3C

4C

ACC
om

pu
ta

tio
n

de
la

y
ab

st
ra

ct
io

n

(3) (2) (1) (1)

(2) (2) (2) (1)

DIFF DEL MEMO ZERO

Communication delay abstraction

(1) Comm. delays
averaged over
instruction execution
delays

(2) Uniform averaged
delay per peripheral

(3) Uniform averaged
delay per peripheral
& access
sequentiality

SPI program memory

SRAM, console & SHA1

Higher abstraction

Fig. 3. Variants and their realizability in simulation solutions shown in a
classification matrix

Timing
characterization

Ground truth
timings

Increase quantum
size until accuracy

changes
by over 0.1%

Execute
simulation

Analyze &
compare

Supported
variants

For each
supported

variant

VP
 instantiation

Quantum

search

Execute 100
times

Fig. 4. Comparison workflow

We define the Step Percentage Error (SPE) of execution
cycle step timings to be the relative error, i.e., the relative
execution duration difference of an execution cycle in a TL
simulation and the ground truth. Moreover, we employ an error
aggregation of all SPE values generated by a VP simulation
through a Root Mean Squared Error (RMSE) function. We
denote this aggregation by writing rmse(SPE).

In the quantum search step, beginning from a quantum
size of 10 ns (clock duration of the ground truth SoC), we
increase the quantum size by 10 ns in each step. We increase
the quantum sizes until the rmse(SPE) changes by over 0.1%
in comparison to the initial error value in which the quantum
size of 10 ns was used.

3) Deviation Measurement: We try to separate the observed
accuracy error into its systematic components. The first part
is inherent to the abstraction level, while the second part
corresponds to the implementation part, i.e., an inaccuracy we
introduced during the construction of a specific measured VP.
System abstraction The chosen variant in which a system is

modelled has an intrinsic theoretical upper bound for the
accuracy. We will refer to a timing inaccuracy induced
through this reason as intrinsic abstraction error.

Platform limitations An actual implementation of a bench-
mark variant in a given simulation solution might have
less accuracy. We refer to an inaccuracy induced through
this reason as realization error.

We are mainly interested in timing inaccuracies caused
by realization limitations of the examined three simulation
solutions. For instance, a variant may inherently yield a bad

timing accuracy for predictions because of its high abstraction.
However, we want to know how well a simulation solution
supports the realization of a variant. In other words, we want
to know the deviation between the theoretical best-case SPE
of a variant versus the actual measured SPE of a benchmark
in a specific VP. We call this deviation ∆SPE .

We make a-priori estimations of the SPE values for a
variant and denote these values as SPE est. These estimations
use the instruction and transaction execution counts of the
ground truth by calculating these with the parametrization
values for a variant and summarizing these (assuming the
timing behavior outlined in Section IV-B1). However, this es-
timation does not account for the interdependency of multiple
execution threads. Such an interdependency occurs between
the CPU execution thread and the SHA-1 peripheral through
the polling behavior. Therefore, a ∆SPE value may include
small intrinsic abstraction errors, which we, however, consider
negligible for the most cases.

Fig. 5 summarizes this deviation-based measurement ap-
proach where SPEmes describes a measured SPE value. It
describes the approach for single SPE values. However, to
evaluate the deviations for all simulated execution cycle steps
in a VP simultaneously, we allow the RMSE aggregation of
∆SPE values.

Ground truth
step duration

Actual VP

step duration

Intrinsic abstr. error Realization error

Estimated SPE:

SPEmes

Ideal variant
step duration

SPEest

ΔSPE

Measured SPE:

Fig. 5. Correlation between intrinsic abstraction error/realization error and
different SPE types

C. Results

1) Estimated Intrinsic Abstraction Errors: Fig. 6 shows
the rmse(SPE est) values for each variant defined in Fig. 3.
We denote the variants realized in a VP simulation solution
with the following general syntax solution[computation delay
abstraction][communication delay abstraction]. Since the de-
picted values in Fig. 6 are estimated and not generated through
a concrete simulation in a simulation solution, we leave the
solution part on the x-axis empty.

A higher instruction class granularity through a computation
delay abstraction level does not necessarily yield better accu-
racy results (see Fig. 6) when the averaged instruction delays
for an abstraction level are heterogenic. This is especially the
case for ZERO and MEMO based variants as they average
communication delays for the program memory over an entire
instruction class. For instance, an instruction of type a might
execute many sequential program memory accesses in the
DHRY process while it only makes random program memory
accesses in the SHA-1 process.

[1C][ZERO]
[1C][MEMO]

[1C][DEL]
[1C][DIFF]

[3C][ZERO]
[3C][MEMO]

[3C][DEL]
[3C][DIFF]

[4C][ZERO]
[4C][MEMO]

[4C][DEL]
[4C][DIFF]

[AC][ZERO]
[AC][MEMO]

[AC][DEL]
[AC][DIFF]

Variants

0.0

2.5

5.0

7.5

10.0
rm

se
(S

PE
es

t)
in

 %

4.11 % 4.19 % 3.86 %

1.49 %

4.16 % 4.32 % 4.00 %

1.63 %

7.31 % 7.47 %

4.26 %

1.46 %

9.95 %10.16 %

4.20 %

1.60 %

Fig. 6. Aggregated estimated intrinsic abstraction errors for all defined 16 variants

GM[S][1C][ZERO]

GM[S][1C][MEMO]
GM[S][1C][DEL]

GM[S][1C][DIFF]

GM[M][1C][ZERO]

GM[M][1C][MEMO]
GM[M][1C][DEL]

GM[M][1C][DIFF]

GM[M][3C][ZERO]

GM[M][3C][MEMO]
GM[M][3C][DEL]

GM[M][3C][DIFF]

Variants

0

20

40

rm
se

(
SP

E)
 in

 % 41.03 % 38.22 %

12.30 % 7.95 %

24.21 % 24.14 %

8.91 % 13.70 %
24.96 % 24.93 %

8.55 %
14.92 %

Fig. 7. Aggregated deviations for all variants realized in gem5

As should be expected, the DIFF based variants are the most
promising variants for timing predictions since the aggregated
estimated intrinsic abstraction error values are the lowest
(around 1.5%). The following subsections examine the error
added by the candidate platforms on top of this best-case error.

2) OVPsim Realization Errors: As shown in Fig. 3 OVPsim
only supports two variants. Therefore, we describe the results
for OVPsim in text form. We notice that for OVP[1C][ZERO]
the deviation is only 1%, i.e., OVPsim is very close to the the-
oretical accuracy limit for this variant. For OVP[1C][MEMO]
we notice a high additional error of 23%.

The likely reason is the fact that communication delays
are implemented with two calls in OVPsim to a memory-
mapped device. The first call blocks the ISS. After the
specified delay the CPU component is notified and retries the
load/store instruction with zero delay [40]. This means that the
communication delays can only be accounted for on a rounded
instruction length basis.

3) gem5 Realization Errors: Fig. 7 shows the aggregated
deviations for each realized variant as VP in gem5 (abbreviated
as GM). The [M] prefix denotes variant realizations with the
minor CPU model while the [S] prefix denotes realizations
with the simple CPU model. Because we could not find any
direct state-of-the-art documentation regarding the 32-bit ISA
support for RISC-V in gem5, we opted to use a 64-bit ISA
realization. This decision causes significant realization errors
because the firmware must be adapted in the realizations.

Fig. 7 shows that the results for the 1C and 3C computation
abstraction levels are very similar. Only the communication
delay configurations cause significant changes for the minor

CPU based variants. The noticeable deviations (8.55% to
24.96%) are caused through the pipeline behavior of the minor
CPU, which can only be partially configured to resemble the
non-pipelined PicoRV32 execution behavior.

For all variant realizations in Fig. 7 based on the simple
CPU the aggregated deviations are also noticeable (7.95%
to 41.03%). For unaligned instructions, which occur due
to the compressed ISA usage, the CPU model issues two
transactions. While our custom buffer simulates the buffering
behavior of the PicoRV32 CPU, the simple CPU model
simulates a full instruction delay for each instruction fetch
nevertheless.

4) RISC-V VP Realization Errors: Fig. 8 shows the aggre-
gated deviations for each realized variant as VP in RISC-V VP
(abbreviated as VP). We notice that the ZERO and MEMO
based variant realizations with a 4C or AC computation
abstraction level show a deviation around 0.53% to 0.58%.
We consider these deviations to be intrinsic abstraction errors
not captured by the SPEest because we could not find any
realization errors that may explain this behavior. However,
for the DEL and DIFF based variant realizations Fig. 8
shows noticeable deviations. This is because the employed
predefined CPU model in RISC-V VP does not feature the
same instruction prefetch behavior as the PicoRV32 CPU.

5) Simulation Speed: As described in [39], gem5 only
supports temporal decoupling for nodes in distributed (net-
work) systems. We therefore only conducted the quantum
search for the realized variants in RISC-V VP and OVPsim.
According to the search process described in Section IV-B2,
for RISC-V VP the quantum sizes are all between 140 ns

VP[1C][ZERO]
VP[1C][MEMO]

VP[1C][DEL]
VP[1C][DIFF]

VP[3C][ZERO]
VP[3C][MEMO]

VP[3C][DEL]
VP[3C][DIFF]

VP[4C][ZERO]
VP[4C][MEMO]

VP[4C][DEL]
VP[4C][DIFF]

VP[AC][ZERO]
VP[AC][MEMO]

VP[AC][DEL]
VP[AC][DIFF]

Variants

0

2

rm
se

(
SP

E)
 in

 %

0.00 % 0.00 %

3.78 %

1.80 %

0.00 % 0.00 %

3.78 %

1.80 %
0.57 % 0.58 %

3.78 %

1.80 %

0.53 % 0.53 %

3.78 %

1.80 %

Fig. 8. Aggregated deviations for all variants realized in RISC-V VP

and 390 ns but there is no systematic correlation between
quantum sizes and variants. However, for OVPsim the selected
quantum sizes are 1150 ns for OVP[1C][ZERO] and 110 ns
for OVP[1C][MEMO]. The quantum sizes directly relate to
the highest employed peripheral delays being used.

Fig. 9 shows the averaged simulation durations for each
simulation solution and variant. The figure shows that the
RISC-V VP and gem5 variant realizations with the simple
CPU model have a low execution duration of around 1 s to
1.25 s. The variant realizations in OVPsim require more time
with around 2.5 s because of the DBT based ISS overhead,
which is not amortized in such a short simulation. The longest
execution durations are caused through variant realizations in
gem5 with the minor CPU. Especially the realizations based
on the ZERO and MEMO communication delay abstractions
yield long execution durations because they cause a very high
speculative prefetching overhead in the CPU model.

D. Evaluation and Discussion

Based on the results in the previous section, we conclude
that the RISC-V VP simulation solution is the best selection
for realizing small RISC-V based SoCs as VPs in the TL
abstraction for most use cases since we assume that small
SoCs often have a simple structure (e.g., single-master bus and
low CPU microarchitecture complexity). The realized variants
in this simulation solution exhibit low aggregated deviations
(around 0% to 3.78%) and therefore low realization errors.

Furthermore, the simulation durations for the realized vari-
ants in the RISC-V VP solution are around 1.25 s and therefore
175 times as fast as the RTL simulation. The variants real-
ized in gem5 with the simple CPU model have comparable
durations but exhibit considerably higher aggregated devia-
tions around 7.95% to 40.3%. The OVP[1C][ZERO] variant
realization also exhibits a low aggregated deviation, but its
execution duration is significant longer than for the RISC-V
VP based realizations because of the DBT based ISS approach,
which is problematic for short simulations.

The simulation solution RISC-V VP is simple and small
because of its conformance to the SystemC TLM-2.0 standard
and its RISC-V ISA focus. It supports the transaction IA,
which is sufficient for most use cases of TL modeling for small
SoCs – including multi-master systems with low contention
levels (see [10]). For more specific cases where a pipelined
CPU microarchitecture or a multi-master bus system with

[1C][ZERO]

[1C][M
EMO]

[1C][D
EL]

[1C][D
IFF]

[3C][ZERO]

[3C][M
EMO]

[3C][D
EL]

[3C][D
IFF]

[4C][ZERO]

[4C][M
EMO]

[4C][D
EL]

[4C][D
IFF]

[AC][ZERO]

[AC][M
EMO]

[AC][D
EL]

[AC][D
IFF]

Variants

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er

ag
e

ru
nt

im
e

in
 se

co
nd

s

RISC-V VP
OVPsim
gem5 (simple)
gem5 (minor)

Fig. 9. Averaged execution durations for all simulation solutions and variants

high contention levels should be simulated, we consider gem5
with the minor CPU a promising alternative. For long-running
simulations OVPsim can offer a good performance gain while
allowing a sufficient timing accuracy.

As major limitations of this work we consider the following
points: Our SoC exhibits a low hardware parallelism. Employ-
ing an estimation based approach for accuracy comparison
as in this paper might be problematic for systems with a
higher degree of parallelism. Such further examinations would
also help to better validate advantages of gem5 and OVPsim
(e.g., through long-running simulations). Furthermore, our
case study only considers two representative CPU workloads.
Finally, as described in Section IV-C3 we opted for a 64-bit
realization in gem5 because of its unclear 32-bit support. This
causes an inherent high realization error in the gem5 variants.

V. CONCLUSION

We showed through a qualitative comparison that the four
state-of-the-art VP simulation solutions gem5, RISC-V VP,
OVPsim, and Renode are applicable for timing predictions
through VPs in early design phases. Through a subsequent
quantitative comparison of the solutions gem5, OVPsim, and
RISC-V VP, we found that RISC-V VP offers good timing

accuracy and performance results with little modeling work.
The quantitative comparison conducted in this paper is based
on a case study with a representative small RISC-V based SoC
which features a low CPU microarchitecture complexity and a
single-master bus interconnect. Furthermore, we showed that
a more detailed computation delay abstraction level in a VP
does not necessarily enhance the timing accuracy.

While we think we gave a good quantitative comparison in
this paper, further case studies are required based on other SoC
designs, CPU workloads, and VP realizations. We hope that
this paper provides an impulse for such work in the future.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 5th ed. Waltham, MA: Morgan Kaufmann/Elsevier,
op. 2012.

[2] F. Kesel, Modellierung von digitalen Systemen mit SystemC: Von der
RTL- zur Transaction-Level-Modellierung. München: Oldenbourg
Wissenschaftsverlag, 2012.

[3] D. Patterson and J. L. Hennessy, Computer Organization and Design
RISC-V Edition: The Hardware Software Interface, RISC-V edition ed.,
ser. Morgan Kaufmann series in computer architecture and design.
Boston, MA: Elsevier, 2018.

[4] S. Sfar, I. Bennour, and R. Tourki, “Transaction level models’ struc-
turing: From idioms to tlm-2,” Journal of Theoretical and Applied
Information Technology, vol. 76, pp. 178–201, 06 2015.

[5] “IEEE Standard for Standard SystemC Language Reference Manual,”
IEEE Std 1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638,
2012.

[6] “RISC-V Exchange,” RISC-V International, Accessed: 16.02.2022.
[Online]. Available: https://riscv.org/exchange

[7] P. E. S. Bomfim and A. Gerstlauer, “Integration of Virtual
Platform Models into a System-Level Design Framework,” Tech.
Rep., August 2010, Accessed: 13.07.2021. [Online]. Available:
https://repositories.lib.utexas.edu/handle/2152/ETD-UT-2010-05-1257

[8] Imperas Installation and Getting Started Guide, Imperas
Software Limited, 2021, Accessed: 24.07.2022. [Online].
Available: https://www.ovpworld.org/documents/Imperas Installation
and Getting Started.pdf

[9] “QEMU - a generic and open source machine emulator and virtualizer,”
Accessed: 16.02.2022. [Online]. Available: https://www.qemu.org/

[10] G. Schirner and R. Dömer, “Quantitative analysis of transaction level
models for the AMBA bus,” in Proceedings of the Design Automation
Test in Europe Conference, vol. 1, 2006, pp. 1–6.

[11] S. Jayadevappa, R. Shankar, and I. Mahgoub, “A comparative study of
modelling at different levels of abstraction in system on chip designs:
a case study,” in IEEE Computer Society Annual Symposium on VLSI,
2004, pp. 52–58.

[12] R. Scheffel, “Simulation of RISC-V based systems in gem5,” M.S.
thesis, Technische Universität Dresden, Dresden, 2018.

[13] D. Mueller-Gritschneder and A. Gerstlauer, “Host-compiled simulation,”
in Handbook of Hardware/Software Codesign, S. Ha and J. Teich, Eds.
Dordrecht: Springer Netherlands, 2017, pp. 1–27. [Online]. Available:
https://doi.org/10.1007/978-94-017-7358-4 18-1

[14] S. Karandikar et al., “Firesim: FPGA-accelerated cycle-exact scale-out
system simulation in the public cloud,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), 2018, pp.
29–42.

[15] A. Dodds, “A Small RISC-V Virtual Machine,” Accessed: 31.08.2021.
[Online]. Available: https://github.com/bit-hack/riscv-vm

[16] F. Bellard, “Tinyemu,” Accessed: 24.08.2021. [Online]. Available:
https://bellard.org/tinyemu/

[17] T. Aoyagi, “riscv-rust,” Accessed: 24.08.2021. [Online]. Available:
https://takahirox.github.io/riscv-rust/index.html

[18] S. Macke, “Online OR1K Emulator running Linux ,” Accessed:
01.09.2021. [Online]. Available: https://github.com/s-macke/jor1k/

[19] Y. Li, “A riscv isa simulator in rust,” Accessed: 01.09.2021. [Online].
Available: https://github.com/shady831213/terminus

[20] “Spike, a RISC-V ISA Simulator,” RISC-V International, Accessed:
01.09.2021. [Online]. Available: https://github.com/riscv/riscv-isa-sim

[21] “chipsalliance/swerv-iss,” CHIPS Alliance, Accessed: 31.08.2021.
[Online]. Available: https://github.com/chipsalliance/SweRV-ISS

[22] M. B. Petersen, “A graphical processor simulator and assembly editor
for the RISC-V ISA,” Accessed: 01.09.2021. [Online]. Available:
https://github.com/mortbopet/Ripes

[23] V. M. de Morais Costa, “RISC-V Instruction Set Simulator
(Built for education),” Accessed: 01.09.2021. [Online]. Available:
https://github.com/vmmc2/Vulcan

[24] R. Giorgi and G. Mariotti, “WebRISC-V: a web-based education-
oriented RISC-V pipeline simulation environment,” in ACM
Workshop on Computer Architecture Education (WCAE-19),
Phoenix, AX, (USA), jun 2019, pp. 1–6. [Online]. Available:
http://www.dii.unisi.it/ giorgi/papers/Giorgi19-wcae.pdf

[25] G. Savaton, “A visual simulator for teaching computer architecture
using the RISC-V instruction set ,” Accessed: 01.09.2021. [Online].
Available: https://github.com/Guillaume-Savaton-ESEO/emulsiV

[26] B. Landers, “RARS – RISC-V Assembler and Run-
time Simulator ,” Accessed: 01.09.2021. [Online]. Available:
https://github.com/thethirdone/rars

[27] A. Castellanos, “RISC-V Assembler and Runtime Simulator,” Accessed:
01.09.2021. [Online]. Available: https://github.com/andrescv/Jupiter

[28] “Imperas RISC-V riscvOVPsim reference simulator and
architectural validation tests,” Open Virtual Plat-
forms/Imperas Limited, Accessed: 26.08.2021. [Online]. Available:
https://www.ovpworld.org/riscvOVPsimPlus/

[29] “RISC-V Vector Environment,” Barcelona Supercomput-
ing Center, Accessed: 10.02.2022. [Online]. Avail-
able: https://repo.hca.bsc.es/gitlab/epi-public/risc-v-vector-simulation-
environment

[30] “Post-Quantum Crypto IP: Software Support,” PQShield, Accessed:
01.09.2021. [Online]. Available: https://pqsoc.com/software/

[31] “VLAB Virtual Platform Products,” ASTC, Accessed: 01.09.2021.
[Online]. Available: https://vlabworks.com/products/

[32] “Renode - Antmicro’s virtual development framework for complex
embedded systems,” Antmicro Ltd, Accessed: 27.08.2021. [Online].
Available: https://github.com/renode/renode

[33] “gem5/gem5,” Accessed: 24.01.2022. [Online]. Available:
https://github.com/gem5/gem5

[34] V. Herdt, D. Große, P. Pieper, and R. Drechsler, “RISC-
V based virtual prototype: An extensible and configurable
platform for the system-level,” Journal of Systems Archi-
tecture, vol. 109, p. 101756, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1383762120300503

[35] G. Kothari and G. Yuksek, “TinyEMU based full system cycle-
level micro-architectural research simulator for single-core RISC-
V systems,” Computer Architecture and Power-Aware Systems
Research Group, Accessed: 30.08.2021. [Online]. Available:
https://github.com/bucaps/marss-riscv

[36] “Minres/dbt-rise-core,” Minres, Accessed: 26.08.2021. [Online].
Available: https://github.com/Minres/DBT-RISE-Core

[37] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
First IEEE/ACM/IFIP International Conference on Hardware/ Software
Codesign and Systems Synthesis (IEEE Cat. No.03TH8721), 2003, pp.
19–24.

[38] W. Klingauf, R. Gunzel, O. Bringmann, P. Parfuntseu, and M. Burton,
“Greenbus - a generic interconnect fabric for transaction level mod-
elling,” in 2006 43rd ACM/IEEE Design Automation Conference, 2006,
pp. 905–910.

[39] J. Lowe-Power et al., “The gem5 simulator: Version
20.0+,” 2020, Accessed: 28.05.2022. [Online]. Available:
https://arxiv.org/abs/2007.03152

[40] OVP Peripheral Modeling Guide, Imperas Soft-
ware Limited, 2021, Accessed: 27.08.2021. [Online].
Available: https://www.ovpworld.org/creating-behavioral-peripheral-
components-using-bhmppm-apis-and-adding-them-to-platforms

[41] “Time framework,” Antmicro Ltd., Accessed: 27.08.2021. [On-
line]. Available: https://renode.readthedocs.io/en/latest/advanced/time
framework.html

[42] C. Wolff, “PicoRV32 - A Size-Optimized RISC-
V CPU ,” Accessed: 23.08.2021. [Online]. Available:
https://github.com/cliffordwolf/picorv32

[43] R. P. Weicker, “Dhrystone: A synthetic systems programming
benchmark,” Commun. ACM, vol. 27, no. 10, pp. 1013–1030, Oct.
1984. [Online]. Available: https://doi.org/10.1145/358274.358283

