Virtual Prototyping in SystemC AMS for Validation
of Tight Sensor/Firmware Interaction in Smart
Sensors

1% Alexandra Kiister, 2" Rainer Dorsch
Bosch Sensortec GmbH
Reutlingen, Germany
alexandra.kuester @bosch-sensortec.com

Abstract—The growing number of ultra-low power sensor
applications drives the processing requirements on-the-edge”
and increases the demand for smart sensors, which implement
signal processing and algorithmic features in firmware. Virtual
prototyping in SystemC has become a major field of interest
to validate the firmware and allow a seamless integration.
However, the capability of SystemC is limited to discrete-time
applications and cannot handle the full sensor system including
its analog front end and mechanical part. Consequently, the
firmware validation is often limited to oversimplified scenarios.
In this paper, we present a virtual system prototype (VSP) using
SystemC and its analog/mixed-signal (AMS) extensions which
permits the validation of complex firmware features with tight
interaction to the sensor element. The key benefit of this approach
is an improved controllability and observability during the sensor
firmware development even in early design phases. An industrial
case study of a MEMS accelerometer and gyroscope is used
throughout the paper to illustrate the proposed approach. A
performance analysis proves the pracitcal relevance of our full-
stack VSP as the simulation time is increased by a factor less
than five compared to a pure SystemC approach without any
functionality in the analog or physical domain.

Index Terms—SystemC, SystemC AMS, Virtual Prototype,
MEMS

I. INTRODUCTION

In recent years, the amount of sensors in the consumer
electronics market has increased rapidly. Smart sensing has
pushed forward new product areas as wearables and hear-
ables integrating smart algorithms as gesture recognition or
advanced built-in self-test methods. The emerging complex
functionalities together with the demand for ultra-low power
devices lead to an increasing amount of integrated firmware.
However, the consumer market is changing fast and thus
the pressure for low time-to-market is high. Thereby, the
hardware/software integration becomes a major bottleneck.
Hardware/software mismatches are often detected late due
to loose cross-checking during the design flow. In order to
discover mismatches earlier, system-level simulation is used
to validate the firmware and its interaction with the hardware
before the latter is available. Thus, virtual system prototypes
(VSPs) have become a major field of interest within the last
years.

978-1-6654-7332-3/22/$31.00 ©2022 IEEE

3™ Christian Haubelt

University of Rostock
Rostock, Germany

4™ Karsten Einwich
COSEDA Technologies GmbH
Dresden, Germany

Fig. 1: Schematic of a MEMS sensor. (1) Application Specific
Integrated Circuit (ASIC), (2) Printed Circuit Board (PCB),
(3) Housing, (4) MEMS element, (5) Bonding wires, (6)
Decoupling unit

VSPs allow system-level simulation beyond the scope of
functional modeling. Instead, they can implement timing or
performance related simulations [1]. Moreover, they offer high
reuse and are available in very early stages. SystemC has
developed as a standard for system-level simulations. As it is
implemented as a C++ library, it inherently offers possibilities
to simulate hardware models and software together. Its event-
driven nature makes simulations fast. Nevertheless, it also
restricts it to the discrete-time domain missing out not only
the analog but also the multi-physical domain needed to
simulate a heterogeneous smart sensor system. In order to
overcome the domain limitations of SystemC, efforts have
been undertaken to develop an analog/mixed-signal (AMS)
extension for SystemC, called SystemC AMS. The current
standard has been released as IEEE Std 1666.1-2016 [2].

Traditional firmware use cases like step counters implement
post-processing procedures on the sensor data which allows
easy validation on recorded data. However, in modern sensors,
the firmware functions running on the device are tightly
coupled with the sensor functions and bidirectionally interact
with the sensor element. This generates a feedback loop
between sensing unit and firmware, i.e. between the multi-
physical hardware and the software. If the sensor element

ACC GYR

12¢/SPL

MCU

Host

< Int

Fig. 2: Schematic view of a smart sensor. It includes a
microcontroller unit (MCU) to process the raw sensor data
on the device.

is not represented in the VSP, the feedback loop is broken.
Excitation schemes normally controlled by the firmware are
not supported and must be realized using complex and error-
prone test scripts.

In order to solve these issues, we propose a VSP im-
plementing the full stack from sensor element to firmware
for a MEMS (Micro-Electronic Mechanical System) inertial
measurement unit (IMU) including three-axis accelerometer
and three-axis gyroscope. Fig. 1 shows the schematic structure
of such a MEMS sensor. For smart sensors, the ASIC (Appli-
cation Specific Integrated Circuit) includes a microcontroller
unit (MCU) and memory in order to directly process the
raw sensor data on the device using integrated firmware. A
schematic view is given in Fig. 2.

In the following, we refer to the sensor element as the
MEMS element (shown in blue in Fig. 2), or simply MEMS,
and its analog front end which is part of the ASIC. The sensor
element is modeled in SystemC AMS. The rest of the ASIC,
i.e. the digital part of the prototype, is written in SystemC.
As system-level modeling in SystemC is well-known [1], we
focus on the implementation of the AMS part. Afterwards,
the VSP is applied to one test case per sensor to prove its
ability for firmware validation. Thereby, the benefits and costs
are discussed including a performance analysis that shows the
suitability of our approach for industrial use.

The rest of the paper is structured as follows. Section II
gives an overview of related work. Section III introduces
the modeling language and the fundamentals of MEMS-based
accelerometers and gyroscopes in preparation of section 1V,
where the implemented model is described. The model is then
applied to one firmware feature per sensor, and benefits and
costs of the new approach are discussed as a case study in
section V. The paper is concluded in section VI.

II. RELATED WORK

As the complexity of heterogeneous systems in general
and smart sensors in particular is rising fast, virtual system
prototypes have gained further interest within the last two
decades. System-level models for sensor elements have been
proposed manifold with a wide range of different abstraction
levels. In [3], the authors present a generic mathematical model
built in Matlab Simulink that can be applied to all sensor
types as it only describes the input-output behavior using a

scale factor and some non-ideal terms as nonlinearities and
noise. It is not suitable for our application as it misses any
dynamics and the implementation of test modes. Andryakov
et al. [4] propose the usage of Verilog-AMS for the MEMS
modeling in order to get a common simulation framework
for MEMS and ASIC to ease their co-design. The approach
works likely using VHDL-AMS as it is used in [5]. There,
a combined top-down and bottom-up design flow is proposed
and illustrated using a microaccelerometer model. They extend
the VHDL-AMS modeling on system-level by finite element
methodical simulations for the lower abstraction level and
feed back the gained parameterization to the system-level
model. However, both hardware description languages reach
their limits if the simulation scope is extended to embedded
software. Moreover, the detailed analysis and comparison of
those modeling languages in [6] concludes in the statement
that both might not be suitable for full system simulation of
complex heterogeneous systems and the authors describe the
need for an AMS extension to SystemC.

After SystemC AMS has been released, several studies have
been conducted to show the ability of SystemC AMS for
different use-cases. In [7], the authors propose a top-down
design flow using SystemC AMS and apply it to a temperature
sensor. Thereby, models of different abstraction levels are
created that can be used as executable specification, for ar-
chitecture exploration and integration validation. Nevertheless,
they do not take into consideration complex heterogeneous
systems with hardware/software interaction. In [8], this scope
is extended to the joint simulation of SystemC and its AMS
extension implementing a VSP for a CMOS video sensor. Still,
no embedded software integration is discussed.

[9] presents a virtual prototype for a MEMS sensor hub
including the firmware, although their contribution is more
focused on an automatic firmware generation flow. Thereby,
the sensor element only feeds through prerecorded data from
a CSV file at a specified data rate. Thus, the signal flow is
somehow unidirectional, and their virtual system prototype
could not handle tight sensor element-firmware interaction.

Our work can be best seen as a continuation of [10]. There, a
high-level model for a sensor system including accelerometer,
magnetometer and gyroscope has been developed using Sys-
temC AMS. They describe the usability limits of widely used
high-level modeling languages as Matlab Simulink and the
AMS extensions for VHDL and Verilog when the validation
scope is extended towards embedded software. To overcome
those limits, they propose a hardware/software virtual pro-
totype using SystemC, its AMS extension and embedded
software in C/C++. Their work focuses on the implementation
details of this virtual prototype and the comparison of dif-
ferent modeling styles using different models of computation
(MoCs). In our work, we investigate the applicability of such
VSPs to firmware validation in an industrial environment.
A case study on a real-world example of a MEMS inertial
measurement unit is given for that purpose, and benefits and
costs are discussed.

III. FUNDAMENTALS
A. AMS extension to SystemC

SystemC AMS supports analog/mixed-signal (AMS) mo-
deling as a natural extension of SystemC, which is limited
to discrete-time simulations by its event-driven nature. It
allows to describe AMS blocks at high abstraction levels and
prevents overheads caused by co-simulation frameworks or
the integration of low-level AMS models. SystemC together
with its extension thus allows fast system-level simulation of
heterogeneous systems.

Three models of computation (MoCs) are standardized for
that purpose, targeting different descriptions and mathematical
formalisms. The timed data flow (TDF) MoC is based on
data-flow semantics and assumes signals to be directed and
uniformly sampled. Each module has a constant sampling
time. The underlying synchronous data flow model supports
the generation of a static schedule during elaboration and a
fast execution during simulation time. Additionally, it offers
an efficient incorporation of linear transfer functions and state-
space equations. The linear signal flow (LSF) MoC and the
electrical linear network (ELN) MoC implement continuous-
time modeling styles using a differential algebraic equation
solver. As non-linear differential solvers are generally slow,
they are restricted to linear models. The LSF MoC offers
linear signal-flow primitives to cover the non-conservative
domain. Each model consists of the hierarchical instantiation
of those basic blocks. The modeling procedure is similar for
the ELN MoC but it uses linear electrical primitives following
the conservation laws.

Moreover, SystemC AMS offers the possibility for dynamic
time step assignment in TDF modules and frequency-domain
simulation. Thereby LSF and ELN models inherently offer
a frequency-domain implementation. For TDF modules, the
time-domain and frequency-domain behavior must be imple-
mented independently.

B. Inertial Measurement Units

An inertial measurement unit classically consists of an
accelerometer for acceleration measurements and a gyroscope
for angular rate measurements. In the following, the basic
working principles of those devices are explained shortly.

An accelerometer measures accelerations in terms of capa-
citive changes caused by a deflection of the moving electrode
in the presence of an acceleration force. Physically, it can
be modeled as a damped spring-mass system. The suspended
mass works as movable electrode. Its movement depending on
the acceleration force F' = ma with mass m and acceleration a
is described by a second-order differential equation as follows

mi + bi + kx = F (1)

where b denotes the damping coefficient and k the spring
constant. This corresponds to a classical second-order propor-
tional delay (PT2) element in control technology. The transfer
function (TF) in the frequency domain then calculates to

Fig. 3: Physical model of a general single-axis gyroscope. It
consists of a damped spring-mass system.

wd X(s)
H(s) = 0 =k 2
() 82 + swo/Q + wi F(s) @
with wy being the resonance frequency and Q = —”b”k the

quality factor. As transfer functions can be easily implemented
in SystemC AMS, (2) becomes the core of our model.

A MEMS vibratory gyroscope is based on the same me-
chanical fundamentals. Additionally, it relies on the Coriolis
effect that occurs when an oscillating suspended mass is fixed
to a rotating body. We extend our physical model with a
second spring and damper system as illustrated in Fig. 3. The
differential equation system calculates to

mi + by + kyx = F, 3)
my + b,y + kyy = F,
Here we assume a perfect decoupling of the two axes. Let
x be the drive direction. Using a phase-locked loop and an
amplitude controller, the drive mass is kept in an oscillation
of constant amplitude and frequency. The frequency is chosen
to be the resonance frequency to achieve highest gain. If an
angular rate is applied to the system in z-direction, the Coriolis
force calculates to

ﬁCor = QTTZ’UQL X ﬁz (4)

= —2mu,£), €y

with ¥, being the vectorial drive velocity and Q. the angular
rate. The emerging force in (negative) y-direction causes a
displacement of the sense mass which changes the capacitance
between the moving electrode and the fixed top and bottom
electrodes. The ASIC converts the capacitive change into a
voltage and demodulates it with the carrier, i.e. the drive
velocity. Thus, the output is a voltage that is proportional to
the angular rate in the idealized case.

| |
| |
[SystemC !

|
|
Python } SystemC AMS | Data File
| Accelerometer
|
|
[ACEEEeay Datapath «{ AFE H MEMS H Accel.
h Subsystem
i
| Gyroscope
|

Angular
AFE H MEMS}<‘| rate

Host
Interface

Datapath }4‘{
Digital

} Analog
Domain |
I

Domain

Mechanical

} Physical
Domain |
I

Software Input Data

(a) Top-level overview of the heterogeneous model.

J Drive Drive

control channel

v '

c/V Sense
le—1|

stage channel

ADC [«— Demodulation [«—

SystemC VSP

(b) SystemC AMS model overview.

5 N w? m] . F
(V1| Electrostatic | IN] | = i ! Sensitivity
force Sreqten

Drive channel

Sense channel

o |im) i
H(~)—572+5%+m3}—b| Sensitivity

(c) MEMS model overview.

Electrostatic
force

Fig. 4: Block-level overview of the virtual system prototype
on various layers.

IV. MODEL IMPLEMENTATION

Fig. 4a shows a simplified block diagram of the overall
system model highlighting the different domains. The Sys-
temC model consists of 28 modules and more than 15000
lines of code, ranging from the digital data path up to the
host interface. All of them are combined within one top-level
module to allow easy instantiation. Data are transferred via
TLM (transaction-level modeling). A driver connects the host
interface of the model instance to the test script written in
Python, i.e. the test script acts as a host that can interact with
the prototype through the same channels as a real host can
interact with the hardware. As SystemC is the de-facto stan-
dard for virtual digital prototypes and our approach is focused
on the heterogeneous modeling with AMS extensions, we keep
that rough introduction and focus on the implementation of the
SystemC AMS model in the following. The model is intended
for high simulation speed and comprehensive behavior. Thus,
it intentionally misses some non-idealities that are not relevant
for a first validation of the firmware algorithm. If the model
gets too complex, it deteriorates the developer’s possibilities
to detect malfunctions fast and easily.

The SystemC AMS model has been developed using the
commercial tool COSIDE by COSEDA Technologies [12]. It

allows the automatic code generation of all structural parts.
Moreover, the code for hierarchical models is automatically
generated when they are connected in a block-level scheme
on the visualization dashboard. The MEMS accelerometer is
modeled according to the physical basics denoted in sec-
tion III-B. The transfer function of the PT2 element is modeled
in the LSF MoC. It is surrounded by TDF modules for
the electrostatic force generation and the calculation of the
capacitive change. Please note that it is also possible to specify
transfer functions in TDF modules directly, but we decided
to test different MoCs for our approach. The two MoCs are
connected using the standardized converter ports of SystemC
AMS. The implementation of the PT2 element in COSIDE
representing the damped harmonic oscillator is given in Fig. 5.
Moreover, a saturation effect is modeled to denote the physical
limit of the deflection amplitude of the MEMS. The analog
frontend consists of a C/V stage that converts the capacitive
values via charge integration to corresponding voltage levels.
Afterwards, the voltage is fed through a Sigma-Delta analog-
to-digital converter (ADC) and a filtering stage. The setup is
equal for all three channels.

A block-level diagram of the gyroscope AMS model is
given in Fig. 4b. The MEMS model divides up into the drive
channel and three sense channels, one per axis. The output
of those channels is a differential capacitance similar to the
accelerometer case. A model subset is illustrated in Fig. 4c.
Each block describes one SystemC AMS module and the
signal units are highlighted. The primitive blocks can be reused
from the accelerometer model. The electrostatic force blocks
calculate the electrostatic force acting on the drive/sense
mass depending on the applied voltages and the sensitivity.
The transfer function represents the relation between applied
force and displacement. Finally, the differential capacitance is
calculated from the displacement and the geometry dependent
sensitivity. The analog front end converts the capacitive change
into a voltage using the already mentioned C/V stage. As the
sense signals are modulated with the drive velocity by the
Coriolis effect, a demodulation signal with similar phase and
frequency is provided by the ASIC to demodulate the signals
accordingly. To suppress their higher frequency components,
the demodulation stage also implements a low-pass filtering.
Afterwards, the signals are fed through the ADC stage. The
drive control consists of a phase-locked loop and an amplitude
controller to keep the drive mode in permanent oscillation. The
complexity of the basic modules is low as they are kept general
to keep high simulation speed and allow easy reuse. The main
functionality of TDF modules is specified in their processing-
function. For the electrostatic force block it is exemplarily
given below.

void mems_e_force::processing /()
{
double diff_p = U_cm.read() - U_p.read();
double diff_n = U_cm.read() - U_n.read();
F_out.write (0.5 * (p.sens_p * diff_p*diff_p
- p.sens_n x diff_n*diff_n));

i_sca_lsf_subl i_sca_lsf_sub2
SCA_LSF_SUB SCA_LSF_SUB
y x1 y X

— k1 =1.0/p.mass
x2 k2 = p.w0*p.w0

i_sca_lsf_integl

x2 k2=pw0/pQ k=10

vel

©
K+ x(t)dt

{0 >pos

°scA_
LSF_INTEG

y0 =0.0
vel_lsf

pos_Isf

Fig. 5: Implementation of the damped harmonic oscillator in COSIDE. It is modeled in the LSF MoC.

The data transfer from the sensor frontend towards the
digital data path is easily done using one of the pre-defined
converter ports of SystemC AMS. The SystemC AMS model
can be homogeneously integrated with pure SystemC models
due to the fact that SystemC AMS is an extension of SystemC
and provides interfaces which permit the binding of SystemC
signals.

V. CASE STUDY: FIRMWARE VALIDATION
A. Accelerometer

Our test case for the accelerometer model focuses on the
validation of a built-in self-test (BIST) procedure. In presence
of an acceleration, the suspended mass is deflected. During
the BIST, a deflection is generated by an electrostatic force
instead. When the excitation stops, the mass returns to its rest
position. The firmware enables or disables the test mode that
applies a constant electrostatic force to deflect the mass. In
the pure SystemC case, the offset generation is shifted from
the mechanical part (which is not modeled) into the ASIC
to allow its implementation in SystemC. If the test mode is
enabled, a constant offset is added to the sensor data fed from
the input file. During the test procedure, the offset is enabled
and disabled three times resulting in the rectangular signal
shown in Fig. 6. For our mixed-signal approach, we generate
a voltage signal that is fed to the MEMS instead of specifying
the offset directly. Within the AMS model, the voltage is used
to calculate the electrostatic force that acts on the suspended
mass. It is now possible to extract the timing behavior for the
test procedure. Proper intervals for the force application are
crucial to get the full output swing. In our example, the second
and third excitation times are not long enough to fully deflect
the mass to its maximum.

B. Gyroscope

1) Introduction to the Test Case: As the test case for the
accelerometer is relatively simple, it cannot highlight all be-
nefits of the full-stack prototype. We thus present another use
case with higher complexity in the following. It deals with the
gyroscope model. Again, electrostatic excitation is conducted,
and the sensor behavior is evaluated for self-test purposes.
However, in contrast to the accelerometer case, the sequence
of stimuli is not fixed in advance. Instead, a firmware algorithm
evaluates the response to the initial stimulus and calculates the
next stimulus based on the results. This procedure is repeated

357 —— SystemC only
— SystemC, -AMS
o 3r ‘]
5 | ,
S ‘ I
SP 1
825 | fl
g | \ | |
o | i H
g 2 | LU -
{9} |
& | .
‘ \
15 | \\\k k \
013 014 015 016 0.17 018 019 0.2
Time [s]
Fig. 6: Simulated sensor data during the self-test with and

without sensor element modeling.

several times until the proper functionality of the device is
ensured. In the following, the model of the sensor element is
validated first and the firmware test case is applied to it in a
second step.

2) Model Validation: In order to check that our sensor
element model reacts correctly to an applied stimulus, we
created a test setup with a piecewise constant angular rate
input and checked whether the output voltage of the front end
matches the expected target. Fig. 7a shows the applied angular
rate (2 over time. The sensor output is multiplied with a conver-
sion factor to get an angular rate value instead of the output
voltage. This allows easy comparison to the stimulus here.
Different effects are visible in that measurement. First, the
drive oscillation needs to start-up and reach its final amplitude.
Thus, the sensor does not match the target angular rate in the
very beginning. Moreover, it cannot follow the instantaneous
changes of the input signal. Instead, it shows a transient
behavior to switch from one rate value to the other. Here, one
possible error source for the upcoming firmware validation
becomes visible. If the measurement samples are taken before
the system has settled, it will deteriorate the accuracy of the
self-test algorithm. Fig. 7b shows the corresponding output
of the MEMS for reference. Due to the modulation caused by
the Coriolis effect, the differential capacitance is ringing at the

2500 [‘ ‘ :]
— Stimulus
Sensor output

2000 - —
~— /
& 1500 | f \ g
= f u
8 | |
: |
5 1000 \ 1
=1 / |
(2] / |
< /

500 / \ 1
//’
o/
0 0.05 0.1 0.15

Time [s]

(a) Piecewise constant angular rate stimulus and the correspond-
ing reaction of the sensor element.

Normalized differential capacitance

0 0.02 0.04 0.06 0.08 0.1 0.12
Time [s]

(b) Differential sense capacitance normalized to its maximum
value.

Fig. 7: Simulation results for the model validation.

drive frequency. The amplitude is normalized to the maximum
value.

3) Firmware Validation: After the functionality of the AMS
model has been validated, it is connected to the SystemC
model. Now the full stack from MEMS to firmware is reached
to allow MEMS/firmware interaction patterns. We tried to
match the interface between the AMS model and the digital
part as close as possible to the real implementation. When
applying firmware tests this pays off as it enables us to easily
implement the test cases based on the knowledge about the
hardware implementation. Moreover, the test case developed
for the virtual prototype can be reused without much modifi-
cation when the hardware becomes available.

In the following, we will compare the test procedure for
a VSP without dedicated MEMS model to our approach to
show the benefits of our methodology. Fig. 8 illustrates the
differences between the two test setups. In the pure SystemC
case, the MEMS is only given as a dummy module which
shifts through data from an input file. As the stimuli are not

SystemC

: Virtual System Prototype
Angular Rate MEMS [T 7
Data Dummy ><
/\ """"""""""""" — FW

Driver

(a) The validation setup for the pure SystemC VSP.

SystemC
Virtual System Prototype

SystemC AMS
Sensor Element

Test Script

(b) The validation setup for the full-stack VSP.

Fig. 8: Overview of the validation setup highlighting the data
flow.

known a priori, the input file contains a look-up table (LUT) of
sensor outputs for different input settings. The test script can
interact with the VSP via the driver as described in Sec. I'V. It
reads out the information on which stimulus should be applied
and controls the dummy module of the MEMS to read the
corresponding entry of the LUT. Please note that there is no
effective path between firmware and MEMS. All interactions
must be handled via the driver controlled by the test script
as highlighted in Fig. 8. It requires a careful synchronization
between test procedure and firmware function.

In contrast to that, the integration of the MEMS model
allows interactions between MEMS and firmware through
the virtual prototype. The MEMS model implements the
translation from the voltage stimulus provided by the sensor
front end to the electrostatic excitation. Thus, it provides the
corresponding response without the need for an input file.
Consequently, the test script does not need to interact with
the virtual prototype during the execution of the firmware
feature. It only sets the initial configuration and evaluates the
result of the test case after the algorithm has stopped. The
error sources of the test setup are thus mainly limited to the
VSP. If the VSP is carefully verified, confidence that a test
failure indicates a firmware bug is high. In the pure SystemC
approach, the correct test script is crucial to get a firmware
execution that corresponds to the hardware case. As the test
script is unique for each firmware function, the question of
test script validation arises for each feature separately whereas
the validation of the VSP is valid for all test cases. If the
test case fails, the heterogeneous VSP allows deep insights
into the system behavior. If tracing is enabled, the procedure
can be visualized helping the engineer to find the problem. In

TABLE I: Comparison of the testing procedures with pure
SystemC or full-stack VSP

Virtual Prototype Version

Pure SystemC Full-stack
File input Hardware measurements None
Complexity of test case High Low
Error sources Test case, VSP VSP

Insights into Limited to algorithmic, Algorithmic and
system behavior no physical insights physical insights

Timing errors covered No Yes

Reusability for HW Low High

Confidence in test result Low High

this aspect, firmware validation with VSPs is advantageous
to hardware tests where insights into the system are very
limited. Using the full-stack prototype with AMS part, timing
errors can be found that have not been covered before. For the
proposed firmware feature, it is crucial to wait until the system
has settled onto the new stimulus before the sensor values can
be read out. Otherwise, transient processes can deteriorate the
accuracy of the measurement. The benefits of the mixed-signal
modeling approach are summarized in Table I.

C. Performance Analysis

The last sections have exemplarily shown the advantages
gained by the mixed-signal VSP. Nevertheless, they are ob-
tained at the expense of increased simulation time as the
size and complexity of the virtual prototype increases. To
assess the value of our approach, we quantify the simulation
overhead. We measured the wall-clock time for executing the
different firmware test cases for the pure SystemC VSP and
the full-stack prototype. As the accelerometer model is small
compared to the gyroscope model, we thereby get results for
two different stages of AMS model complexity. The execution
behavior for the gyroscope self-test is not exactly the same
for both prototypes as it dynamically reacts onto the previous
measurement results. Not only the wall-clock time but also
the simulated time is depicted in Table II for that reason. The
ratio is then normalized to the simulated time to allow a fair
comparison between the two approaches that is independent
of the test case. The measured values are moreover split into
initialization procedure and firmware procedure. During the
initialization procedure, the virtual prototype is configured for
the following test case (boot the processor subsystem, en-
able SPI, etc.). Between those configuration steps, significant
waiting times occur. This explains the comparatively large
overhead during this section for both AMS models as the
sensor elements are running in full detail during the idle states
of the test script. The firmware procedure describes the part of
the test script, where the firmware feature is running. Here, the
overhead becomes smaller. We observe a factor of 2.5 times
slower for the accelerometer and about 4.8 times slower for the
gyroscope. As expected, the gyroscope runs slower than the
small accelerometer model. Nevertheless, both models are able
to increase the wall-clock time only by a factor less than five.
Considering the benefits for the test evaluation discussed in

section V-B3, the performance overhead is reasonable to take
in our opinion, especially as finding errors in late design stages
is extremely time-consuming. The analysis shows that it makes
sense to disable the AMS models when they are not of interest.
For example, raising them at the end of the initialization
procedure could save significant simulation time. Working on
improvements of the model efficiency, we furthermore expect
the overhead to decrease.

VI. CONCLUSION

This paper presented a heterogeneous virtual prototype of
an inertial measurement unit in SystemC and SystemC AMS.
It enables effective firmware validation even if the firmware
function is tightly coupled with the sensor behavior. This has
been demonstrated in an industrial case study on the validation
procedure for the BIST in MEMS accelerometers and an
advanced self-test in MEMS gyroscopes. The approach offers
deep insights into the system behavior and permits to find
timing errors. As the interaction patterns match closely the
hardware function, validation is executed without the creation
of complex and error-prone test cases. The developer pays
for these advantages with increased simulation time and the
maintenance of the SystemC AMS model. Nevertheless the
simulation time for common test cases in a state-of-the-art
IMU stays in the range of several minutes and the reuse of
the AMS models is high due to their abstraction level.

REFERENCES

[1] J. Rudolf, D. Gis, S. Stieber, C. Haubelt and R. Dorsch, ”SystemC
Power Profiling for IoT Device Firmware using Runtime Configurable
Models,” 2019 8th Mediterranean Conference on Embedded Computing
(MECO), 2019, pp. 1-6, doi: 10.1109/MECO0.2019.8759994.

[2] F. Pécheux, C. Grimm, T. Maehne, M. Barnasconi and K. Einwich,
”SystemC AMS Based Frameworks for Virtual Prototyping of Hetero-
geneous Systems,” 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), 2018, pp. 1-4, doi: 10.1109/ISCAS.2018.8351864.

[3] J. M. R. Velzquez, F. Mailly and P. Nouet, "A generic model for
sensor simulation at system level,” 2018 Symposium on Design, Test,
Integration & Packaging of MEMS and MOEMS (DTIP), 2018, pp. 1-4,
doi: 10.1109/DTIP.2018.8394198.

[4] Y. Andryakov, A. Anikina, Y. Belyaev, A. Belogurov, D. Kostygov and
D. Puzankov, "ASIC and MEMS co-design methodology,” 2016 IEEE
NW Russia Young Researchers in Electrical and Electronic Engineering
Conference (EIConRusNW), 2016, pp. 120-123, doi: 10.1109/EICon-
RusNW.2016.7448136.

[5]1 M. Shafique, A. Menon, K. Virk and J. Madsen, “System-Level
Modeling and Simulation of MEMS-based Sensors,” 2005 Pakistan
Section Multitopic Conference, 2005, pp. 1-6, doi: 10.1109/IN-
MIC.2005.334503.

[6] F. Pécheux, C. Lallement and A. Vachoux, ”VHDL-AMS and Verilog-
AMS as alternative hardware description languages for efficient mode-
ling of multidiscipline systems,” in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 24, no. 2, pp.
204-225, Feb. 2005, doi: 10.1109/TCAD.2004.841071.

[71 M. Barnasconi and S. Adhikari, "Invited: ESL design in SystemC AMS,”
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),
2017, pp. 1-5, doi: 10.1145/3061639.3072951.

[8] F. Cenni, S. Scotti and E. Simeu, A SystemC AMS/TLM platform for
CMOS video sensors,” Proceedings of the 2011 Conference on Design
& Architectures for Signal & Image Processing (DASIP), 2011, pp. 1-6,
doi: 10.1109/DASIP.2011.6136873.

[9] J. Rudolf, M. Strobel, J. Benz, C. Haubelt, M. Radetzki and O.
Bringmann, ”Automated Sensor Firmware Development - Generation,
Optimization, and Analysis,” MBMV 2019; 22nd Workshop - Methods
and Description Languages for Modelling and Verification of Circuits
and Systems, 2019, pp. 1-12.

TABLE II: Comparison of the Simulation Performance for the Pure SystemC and Full-stack VSP

Simulation Times
Initialization Procedure Firmware Procedure Test Execution
Wall-clock time | Simulated time | Wall-clock time | Simulated time | Wall-clock time | Simulated time

o Pure SystemC 1.3s 0.136s 113.0s 1.9235s 11435 2.059s
5‘ SystemC, -AMS 20.6s 0.136s 487.1s 1.739s 507.7s 1.876s

Ratio normalized to sim. time 15.85 - 4.77 - 4.88 -
= Pure SystemC 0.173 s 0.160s 0.303s 0.045s 0.476s 0.205s
1 SystemC, -AMS 1.655s 0.160 s 0.742s 0.045s 2.397s 0.205s
< Ratio 9.59 - 2.45 B 5.04 -

[10] F. Cenni, O. Guillaume, M. Diaz-Nava and T. Maehne, ”SystemC-

[11]

[12]

AMS/MDVP-based modeling for the virtual prototyping of MEMS
applications,” 2015 Symposium on Design, Test, Integration
and Packaging of MEMS/MOEMS (DTIP), 2015, pp. 1-6, doi:
10.1109/DTIP.2015.7160972.

K. Einwich, “Introduction to the SystemC AMS extension standard,”
14th IEEE International Symposium on Design and Diagnostics of

Electronic Circuits and Systems, 2011, pp. 6-8, doi: 10.1109/D-
DECS.2011.5783036.
Coseda Technologies GmbH. Coside.

http://www.cosedatech.com/coside-overview.

