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Abstract—There are several languages for modeling a Cyber-
Physical System (CPS). One of them is Verilog-AMS, which allows
representing a system belonging to the electrical and mechanical
physical domains in a single model through different disciplines.
A framework for the automatic fault injection in the electrical
and mechanical domains is proposed in this context. In particular,
starting from a mechanical system, it is possible to represent it
as an electrical circuit by exploiting the physical analogies. In
the electrical domain, fault modeling and injection techniques
are more advanced than in other physical domains. Extending
the analogies to fault models makes it possible to apply the
electrical fault models in the equivalent circuit to the mechanical
system. These yields mechanical-level faulty behaviors, which can
be injected into the mechanical domain, resulting in mechanical
(physical) faults, depending on the component. It is finally shown
an example of execution of this flow through a model of an electric
motor, in which mechanical faults are injected. Simultaneously,
the equivalent electrical faults are injected into the equivalent
electrical circuit.

Index Terms—Cyber-physical systems, Safety, Fault modeling,
Fault injection, Verilog-AMS.

I. INTRODUCTION

The industrial field undergoes continuous and rapid evo-
lution, granted by increasing precision of the design and
simulation of the models. As the complexity of these models
grows, increasing accuracy is required to be effective for
industrial production. As part of the functional safety of indus-
trial machinery, simulating these systems is essential to ensure
their proper operation. Once the simulated model is built, fault
injection is performed to understand how the behavior of the
system, or individual component, changes with respect to a
given fault. This procedure, called fault injection, highlights
new vulnerabilities or flaws that could compromise a system’s
safety. However, in the context of CPSs (i.e., multi-domain
systems), how to perform fault injection differs depending
on the part of the system under analysis. Considering an
electro-mechanical system, the fault models injected into the
mechanical part will differ from purely mechanical ones.
Moreover, techniques change also between different physical
domains (e.g., electrical, mechanical, thermal). Overall, fault
injection in analog and digital electrical models is the state of
the practice to ensure functional safety, as mentioned by the
ISO 26262 standard for automotive functional safety [1], [2].
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Fig. 1. Cyber-Physical System locations in which the proposed approach can
act to automatically inject multi-domain faults by exploiting the potentialities
of the Verilog-AMS language.

Therefore, unlike the electrical domain, there is no large use
of fault injection techniques in the mechanical one at the state
of the practice. Primarily because of the difficulty in catego-
rizing mechanical components and the working conditions of
the machinery. Extending the fault injection to the mechanical
field could improve the evaluation of safety mechanisms.
Fortunately, there are some analogies between systems which
belong to different physical domains where they use the same
differential equations. The following sections show that there
are analogies between mechanical and electrical systems [3].
This paper aims to harness these analogies to model faulty
behaviors of a generic system, regardless of the underlying
physical domain. In this way, it would be possible to use the
advanced fault injection techniques of the electrical domain in
others, e.g., the mechanical one. Figure 1 shows an example
of a faulty CPS, where different types of faults can lead to
altering the assisted braking functionality of a motor vehicle
in many ways.

This paper proposes a flow for fault injection in multi-
domain systems using Verilog-AMS:

o Describe a mechanical system as a circuit to inject elec-
trical faults and study its behavior in terms of mechanics;

« Identify mechanical fault models and inject them directly
into the mechanical system;

o Verify the equivalence of electrically injected faults to
mechanic’s faults, forming a taxonomy.

There are many tools to represent and simulate physical
systems: one of them is Verilog-AMS, which is a Hardware
Description Language that can describe the behavior of a



model through differential equations. Such models can be used
also for the fault injection, i.e., changing the equation system.

The paper is organized as follows: Section II describes
the background and the state-of-the-art. Section III shows
how to model mechanical systems and faults by exploiting
the analogies. In Section IV faults are derived from the
electrical to the mechanical domain to build a mechanical fault
taxonomy. Then, in Section V an automatic tool to perform
fault injection into Verilog-AMS multi-disciplinary models
is proposed. Furthermore, an automatic simulation flow for
SPICE-based simulators is presented. Conclusions are drawn
in Section VI.

II. BACKGROUND AND STATE OF THE ART

This section describes the potentialities of Verilog-AMS
as a modeling language. Then, it show the state-of-the-art
of multi-domain fault injection in electrical and mechanical
components. Finally, it describe how to represent a non-
electrical model as an electrical equivalent one.

A. Systems Modeling through Verilog-AMS

The Verilog-AMS language is the last extension of the
Verilog language. The extension is created for combining
the digital and the analog part. The capabilities of Verilog-
AMS are equal to the VHDL-AMS language, and they share
the same functionalities [4]. Moreover, the communication
between the digital and the analog part is possible through pre-
defined language functions. With this features analog models
could communicate with digital designs through apposite func-
tions, e.g., timer (), cross () . For example, these functions
allow to activate a timer inside an analog design or to activate
a crossing routine when the monitored analog function crosses
the zero value of magnitude.

Furthermore, the Verilog-AMS language defines constructs
to model systems from different physical domains. In par-
ticular, electrical, mechanical, and magnetic are the principal
domains covered. It is also possible to define models that com-
bine multiple domains, e.g., by modeling electro-mechanical
systems.Conservative domains are supported by defining the
potential and flow variables. For each physical domain, a
discipline and several natures are defined. For example, the
electrical domain defines as natures the voltage and the current,
accessible through the functions vV () and I (). If required, it
is also possible change the type of the pre-defined potential
and flow variables. The behavior of conservative systems is
described by specifying how the natures of each domain vary
over time. It is easy to define a conservative network by
using the branch statement to create a link between a pair
of nodes. Commercial SPICE-based simulators can simulate
behavioral Verilog-AMS models efficiently. These simulations
can be managed through ad-hoc testbenches written in SPICE-
based code, e.g., Eldo and Spectre.

B. Multi-domain fault modeling and simulation

Faults represent wrong behaviors of a system that can
happen for multiple reasons like device aging, the breaking of

an internal component, a digital failure, or a production defect.
The functional safety studies how it is possible to guarantee
the functionalities of machinery in the presence of failures, by
exploiting different techniques. One of these techniques is fault
injection, formally described in the Standard ISO 26262 [1]
for the electrical domain [5]. A fault is a saboteur if it consists
of a new component that alters circuit behavior by injecting
a new set of equations describing the faulty behavior. The
fault is a mutant when it mutates an existing component, e.g.,
it changes the nominal value of a parameter or models an
abnormal behavior in the presence of faults. In contrast to the
mechanical domain, several failure models are part of the state
of practice in the electrical world. There are well-defined fault
models and fault injection techniques that specify where and
how to inject them into a transistor-level circuit [2].

Instead, the fault simulation techniques are not advanced as
the electrical ones in the mechanical domain. Fault taxonomies
that consider the physical aspect of mechanical systems are
listed in [6], [7]. However, it is possible to model these
physical faults only if the model considers the geometry of
the system and the behavior around it. By abstracting from
the physical level to the behavioral level in the mechanical
domain, the number of works that analyze multi-domain faults
remains limited. It is complex to represent faults suitable for
any physical model and any level of abstraction. Moreover,
a fault modeled in a simulated environment is unlikely to
cover all possible physical variations in the real world. The
accuracy of these fault injection techniques concerning real-
world physics depends on the model’s level of detail. For
example, a minimum subset of details to model a mechanical
rotational model considers the force and the angular veloc-
ity. There are studies describing the injection of mechanical
failures using specific simulation tools [8]-[10]. All these
works propose pre-defined libraries with different classes of
faults modeled as blocks. The main limitation of previous
approaches is the difficulty of reproducing the alterations
with pre-defined blocks, like the Modelica libraries. It is not
easy to systematically change the internal dynamics with a
procedure, and thus it is challenging to alter with faults. The
proposed framework injects different classes of faults into
models described through differential equations by exploiting
the potentialities of the Verilog-AMS language.

C. Systems modeling through the electrical analogies

Equivalent electrical circuits have been used increasingly
over the years in both industry and research to represent
the behavior of complex systems. For this reason, several
analogies have formed between physical domains like thermal,
magnetic, and hydraulic, and especially with the electrical
one [11]. Researchers have used electrical circuits to mimic
other physical systems for a while now. For instance, to
model characteristic parameters variability in automotive bat-
teries [12], internal combustion engine [13], ocean wave power
takeoff [14], partial differential equations [15] and so forth.

This approach can also represent nonlinear dynamical sys-
tems by approximating their behavior. Hence, analogies are



useful to model a translational/rotational mechanical system
as an electrical circuit to exploit its characteristics. Through
analogies, it is possible to link physical quantities of a spe-
cific domain to the ones of another. Analogies are founded
on the concepts of conservation of energy laws [16], [17].
In particular, the cited analogies between the electrical and
mechanical domains are the force-voltage and the force-
current analogy [18]. The force-voltage analogy is considered
the easiest to use, while the force-current analogy is more
conservative with respect to system structure. Once a system
is transformed into its electrical equivalent, fast and accurate
model simulations are achievable with a modern simulator
(e.g., Spectre and Eldo). Alternatively, it is possible to simulate
these models through multi-physics simulators (e.g., Matlab
Simulink/Simscape, Siemens AMEsim). However, using an
Hardware Description Language (HDL) simulator allows the
combination of the equivalent electrical model with accurate
digital systems without doing co-simulation using standards
like Functional Mock-up Interface (FMI). In the following
section, the electrical analogies will be exploited to relate the
mechanical to the electrical domain and analyze the effect of
the faults.

III. MODELING MECHANICAL MODELS AND FAULTS
THROUGH ANALOGIES

The physical analogies introduced in the previous section
have become important also because of the rising knowledge
of the electrical world. The goal is to exploit the mastery
of electrical principles for other scientific domains like the
mechanical one. In particular, they are widely used in the
mechanical field because it is easier to describe and manipulate
an electrical description than a mechanical one [3]. The same
applies to simulation. These analogies are defined at the
mathematical level: an analogy can be established between two
domains if the variables and the mathematical laws that define
them are mathematically equivalent. Therefore, two systems
belonging to different domains can be said to be equivalent
if the differential equations defining them are equivalent. For
instance, it is possible to describe a mechanical system through
an electrical circuit simply by transforming the equations of
the mechanical system into electrical ones. This is accom-
plished by translating the variables of the mechanical domain
into electrical variables, following the relationships between
physical quantities defined by analogy itself. Over the years,
simulations of physical systems, especially electrical circuits,
have been performed via SPICE-based simulators. In this
domain, each component, defined on a branch in Verilog-AMS,
is described through its own differential equation. Combining
all branches using nodes, it is possible to simulate all equations
that make up a circuit by exploiting Kirchhoff’s laws. Over
time, other simulators have been created for the other physical
domains although SPICE-based one is still more efficient for
the electrical domain.

Now, let us see how the analogies between the electrical and
mechanical domains are defined. Focusing on the mechanical
domain, the two main analogies between this domain and
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Fig. 2. Analogies between mechanical (left) and electrical (right) system.

the electrical domain are the force-voltage (also known as
impedance analogy) and the force-current (also known as
mobility analogy) [17]. Figure 2 shows the two types of
analogies between mechanical and electrical domains. The
force-voltage analogy is considered a “direct” analogy since it
is more intuitive than the other. Nevertheless, it still requires an
intermediate representation (mechanical network) to go from
the mechanical domain to the electrical domain. However, no
analogy is superior to the other: the choice to use one instead
of the other is arbitrary because the results are consistent
in both cases. The differences are in the association of the
variables that control each domain: in the force-voltage, force
is associated with voltage, while velocity is equivalent to elec-
tric current. These physical variable relationships are shown
in Table I. In the force-current analogy, as the name sug-
gests, the opposite holds. The force-voltage analogy preserves
the analogy between electrical impedance and mechanical
impedance, whereas the other analogy does not. On the other
hand, the force-current analogy preserves the topology of the
mechanical system when transferred to the electrical domain,
whereas the force-voltage analogy does not. However, all
laws of circuit analysis, such as Kirchhoff’s circuit laws,
apply in the electrical domain to both these analogies. These
analogies become even more effective when analyzing electro-
mechanical systems, such as a DC motor, modeled through
mechanical and electrical parts. The electrical part controls the
motor in voltage, and through an Electromotive Force (EMF)
we can move the shaft, i.e., the mechanical part of the motor.
If the whole system is represented electrically by analogy, it
would be sufficient to use an all-electrical simulation instead of
having both an electrical and mechanical simulation. The work
proposed in this paper is based on the force-voltage analogy
because it turns out to be the most intuitive.

The force-voltage analogy is used with the aim of rep-
resenting a mechanical system through an electrical circuit:
since each variable of a domain is mapped one to one in the
other, each mechanical component corresponds to an electrical
one. These relationships, described in Table I, are obtained
mathematically, starting from the variables of effort and flow,
respectively mechanical force and speed, electrical voltage and
current. For example, a damper is the equivalent of a resistor
since both represent a loss of energy flow in their domains.
Other relations are that the mass is equivalent to an inductance,
a capacitor to a spring efc. All of these relationships highlight
how it is possible to describe a multitude of different mechan-



TABLE I
RELATIONSHIP BETWEEN MECHANICAL AND ELECTRICAL VARIABLES IN
THE FORCE-VOLTAGE (IMPEDANCE) ANALOGY.

Type Mechanical Mechanical Analogous
P translation rotation electrical
Effort
Variable Force Torque Voltage
Flow . Angular
. Vel .
Variable elocity velocity Current
Damping Ro’.[atlonal Resistance
resistance
Mass Mon}ent of Inductance
ertia
Elements . Rotational .
Compliance . Capacitance
compliance
Mechanical Mechanical Electrical
impedance impedance impedance

ical systems. Hence, a 1D mechanical system can be modeled
with passive electrical components by exploiting the analogy.
Let us now consider a real electro-mechanical system: the DC
motor.

A. Running example: DC motor with connected wheel

The DC motor is an electromechanical system, composed
by the electrical actuation part and the mechanical part. It
is choosen as running example because is widely used in
the automotive and factory fields. The system considered as
running example is showed in Figure 3. The DC motor can
be modeled with an equivalent circuit of the armature and the
free-body diagram of the rotor. In details, the electrical part
is composed by a voltage source that drive the current flow, a
resistance connected in series with an inductance that model
the internal characteristics of the internal motor coils. Then
an electromotive force (emf) is used to model the conversion
of the energy from the electrical to the mechanical domain.
The mechanical rotational part model a shaft with own inertia
connected to a wheel with a fixed inertia.

The following constitutive relations model the dynamic of
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Fig. 3. DC motor: the left part show the electrical circuit used to control the
motor with a potential source, while the left part shows the shaft connected
to a wheel. The EMF convert the energy from the electrical to the mechanical
domain.
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Fig. 4. Full electric description of the DC motor plus one wheel.

the motor connected to a wheel:

di

U:KM'W+RM‘i+LN['Eza (D
. Codw dw

r =i (s +dw-w) - s 4 2 )

where v is the input voltage source applied to the motor’s
windings to control the velocity of the rotor; variable i
represents the current through the windings; variable w is
the angular velocity of the shaft; variable 7 is the torque
on the shaft. Kj; and K7 are motor coefficients used to
dimension the size of the motor: coefficient K, is used to
compare motors and to calculate temperature rise based on
the dissipated power, while coefficient K is used to calculate
the required current based on the required torque. The rotor
and the shaft are assumed to be rigid, and the friction torque
is proportional to the shaft angular velocity. According to the
analogy, the inertia (jg and jy ) and friction (dg and dyw)
of the shaft and the wheel in Equation (2) are equivalent
to a capacitor (Lg and Lyy) and resistance (Rg and Ryy)
respectively.

In order to represent the whole system in the electrical
domain, it can be seen as a mechanical network [19], [20].
This intermediate representation between the two domains is
necessary because the force-voltage analogy is used: in fact, it
does not preserve the topology of the system by constructing
the equivalent circuit. The mechanical network consists of the
mechanical components embedded in the branches, while the
nodes represent the displacements. If a component is subject
to a certain displacement, then it will be connected to that
node. Doing so represents a mechanical system in a way
much more similar to an electrical circuit. Indeed, it is much
easier to construct the equivalent electrical circuit by applying
the analogy from this representation than from the original
system. The electrical circuit obtained from the Equation (1)
and (2) through the analogy (shown in Figure 4) consists of
the same electrical section of the system, while the mechanical
part is translated into its electrical equivalent. The motor has
been described with an electromotive force opposite to the
supply force named V.,,; (exerted by the motor itself), a
resistance (Rg) and an inductance (Lg), which are due to
shaft connection. The latter two components were increased
because of the friction and inertia also exerted by the wheel
(RW and Lw)



TABLE II
MECHANICAL FAULT TAXONOMY.

Fault Effect

Galling, Seizure

Surfaces are damaged by sliding over each other due to different speeds and temperatures. Seizing: the two surfaces no longer separate

Creep Plastic deformation due to prolonged stress and/or temperature changes

Spalling Splintering of a surface, deteriorating the function of the component

Rupture Multi-part component breakage

Backlash System motion conditions modified by gaps between parts

Impact High force or shock applied over a short time period when two or more bodies collide

Fatigue Initiation and propagation of cracks in a material due to cyclic loading or impact

Buckling Deformation due to a load or force exerted parallel to the axis of the body

Wear Damage, gradual removal or deformation of material on solid surfaces. Causes of wear can be mechanical or chemical

TABLE III
MECHANICAL FAULT TAXONOMY INFERRED FROM THE ANALOG FAULT INJECTION IN THE EQUIVALENT MODEL.

Mechanical Behavior Mechanical Effect

Mechanical Fault

Electrical Fault Equivalent

Brake/ friction Added/increased braking force on failed compo-  Galling/Seizure, Creep, Spalling, Wear/Corro-  Open
nent sion
Disconnection The failed component detaches from the system Rupture, excess of Backlash Short

External force An abnormal (external) force affects the compo-

nent

It can cause deformations or cracks or ruptures
(from impact of fatigue)

Voltage source

Limited movement The direction of displacement of a component

is abnormally modified

Rupture, Deformation, Wear

Current source

Parametric Intrinsic characteristics of the failed component

altered

Wear (component aging) and all the parameters
changes

Parametric

IV. MECHANICAL FAULTS

Now that the force-voltage analogy has been illustrated, let
us proceed to discuss fault injection. For several years, the list
of widely accepted fault models for the electrical domain was
restricted to open circuit, short circuit, source, and parameter
deviation. However, a few years ago, a working group started
drafting what today is known as the IEEE P2427 standard [5].
This working group is trying to standardize defect modeling,
simulation, and coverage metrics for analog and mixed-signal
circuits. Specifically, the IEEE P2427 standard suggests that
analog faults must be injected one at a time at a single point
in the circuit to determine the behavior of each fault. In the
mechanical domain, instead, faults are usually classified in
relation to the physical characteristics of each component [7].
Usually, in the existing taxonomies a possible cause (e.g. an
overload or an unexpected shock) and the failure mode (i.e.
how the component fails) for each fault are specified. One such
classification is shown in Table II, where the fault model and
its mechanical effect are detailed. It is evident that the effects
primarily involve changes in materials, component geometries,
shapes, and dimensions.

This paper focuses on the behavior of mechanical systems;
therefore, here, we investigate a methodology that relies en-
tirely on the behavioral-level of abstraction. By representing
mechanical systems as mechanical networks and describing
their behavior using equations, a fault taxonomy closer to
this level was researched. This middle representation is also
useful for performing fault injection, and then fault simula-

tion, in terms of the differential equations of each node or
branch of the mechanical network. Consider the modeling
and fault injection process in the electrical domain: they are
very similar to the one required by the proposed procedure,
since the injection is performed into single branches in both
cases. Moreover, the mechanical network is very similar in
construction to an electrical circuit, since both are formed by
nodes and branches, which have their own equation. Using
analogies for this purpose appears to be a good option, which
would allow to have the mechanical behavior described by an
electrical circuit.

However, physical analogies do not provide any information
about failures: it is not always granted that electrical fault
models have a correspondence in the mechanical world. In
fact, behavior is mathematically equal across domains, but that
doesn’t mean it has to be functionally equal. Because of that,
in order to define a possible mapping between electrical and
mechanical faults, there is a need for testing and comparing
their behavior. In particular, it is necessary to simulate the
equivalent faulty electrical circuit, using electrical fault injec-
tion techniques, and to study the obtained behavior from the
mechanical point of view. If the behavior has a meaning from
both electrical and mechanical point of view, then there is a
correlation between faults belonging to different domains.

The open circuit fault represents an arbitrarily valued re-
sistor injected into a line of the circuit. Ideally, with a very
high value, the fault simulates a line break. For example, the
electrical open fault is equivalent to a mechanical braking
agent because both, when injected, significantly reduce the



flow variable, i.e., velocity and electric current. We can think
of this failure as an increased coefficient of friction on the
motion surface due to temperature, wear, or the presence
of debris. Similarly, the other electrical faults at the behav-
ioral level have been applied: shorts and voltage and current
sources. The short circuit fault consists of an unwanted branch
between two points of the circuit that originally was not
supposed to touch each other. This fault can be assimilated to
a disconnection of certain mechanical components from the
rest of the system, such as springs or dampers. The separation
of a component from the rest of the system could happen
if it is affected by excessive backlash or rupture. Voltage
and current sources represent unwanted changes in voltage
and current at a given point in the circuit. This changes
might be caused by interference coming from surrounding
electrical circuits, or by alpha particles coming from outer
space hitting a portion of the circuit. According to the analogy,
force is equivalent to voltage: therefore a voltage source can be
seen as an unexpected external force on a certain component.
Similarly, velocity is equivalent to electric current: therefore,
a current source is a variation of the displacement velocity
of the component in which it is injected. As for parametric
faults, they are equivalent in both domains. More details
on this fault classification and correlation between the two
physical domains can be found at [21], [22]. This extension
of the analogy is shown in Table III: in particular, the injected
electrical fault models and the detected equivalent mechanical
behaviors are shown. In Table II there are some mechanical
failures that can be assimilated to the faulty behaviors obtained
through the simulation [6], [7].

Table III has been derived mainly from the simulation
of several mechanical systems through electrical analogy: a
mass-spring-damper, a tuned mass-spring-damper, a double
pendulum, and a DC motor, presented in the previous sec-
tion. The proposed taxonomy has been built to show how
mechanical fault behaviors can be derived by simulating faulty
electrical equivalent systems. Thus, this fault taxonomy could
be extended by simulating more complex mechanical systems.
The next section will illustrate the procedure of injection and
fault simulation exemplified on the DC motor system.

V. AUTOMATIC FAULT INJECTION AND SIMULATION TOOL

Let us then take the DC motor presented in the previous
sections (Figure 3) as an example: as we have seen it is com-
posed of two main parts, one electrical and one mechanical.
The electrical part provides power to the electric motor itself,
feeding the power supply, while the mechanical section is
composed by the shaft and a wheel, directly connected to the
motor. In particular, it moves the wheel, which is connected
directly to the shaft: these two mechanical parts cause resis-
tances to the torque exerted by the motor, such as rotating
friction and inertia. The system has been described through
the HDL Verilog-AMS and simulated using the techniques
and tools explained in the previous sections. The DC motor
plus wheel model is shown in Listing 2.

Fault injection Tool
Electrical | | / Foreach OPEN & Voltage Source
circuit branch 1. New node
2. New branch
3. Edit current branch
4. Inject fault in the new
i branch Faulty
Which output }-» electrical
fault? circuit
* Verilog-AMS SHORT & Current Source
code 1. C9py current.branch
o Framework 2. Inject fault in the new
. branch
internal
description

Fig. 5. Framework flow.

As we anticipated, the system was translated to electrical via
the force-voltage analogy: the already electrical part remained
unchanged, while the mechanical part was modeled as shown
in Figure 4. This circuit was modeled in Verilog-AMS and is
displayed in Listing 3. Note that the branches Rsw and Lsw
represent the combined values of the shaft and wheel resistors
and capacitors, according to Equation (2) and Figure 4.

Once the electrical equivalent is obtained, we are ready to
inject the electrical faults into the new circuit. As already
explained, faults are injected one at a time, at only one point
in the circuit, following the P2427 standard. An example of an
open fault injected into the DC motor is shown in Listing 4.
Faults are automatically injected using HIFSuite tool [23],
which allows manipulation of various HDL descriptions, in-
cluding Verilog-AMS. The flow is presented in Figure 5:
the tool is able to take any circuit described in Verilog-
AMS and translate it into XML as intermediate modeling for
simpler fault injection. Then, depending on which fault we are
injecting, there is one procedure for faults injected in series
to the branch (i.e. open and voltage source) and one for faults
injected in parallel (i.e. short and current source). Finally, all
faulty circuits, according to the electrical fault models, are
returned by the tool in their original HDL language. Once the
automatic generation of the faulty models is performed, so
all the faulty circuits are obtained. Regarding simulation, the
process is handled by a testbench module, which instantiates
the fault-free model (see Figure 6) and the faulty models
through the alter command as shown in Listing 1. The
comparator receives all the simulation output from the fault-
free and faulty models, then it provides as output the fault
pattern detected and at what point in the time. In this way,

Testbench Fault
. . selection
Init Simulation Comparator
model parameters
fault selection
Faulty Model results.txt
Fault-free D of each
Model LALTER # fault
detected
| | outputs

Fig. 6. Simulation flow.



TABLE IV
AVERAGE SIMULATION TIME AND NUMBER OF INJECTED FAULTS IN THREE DIFFERENT SYSTEMS.

Faults Data RLC Tuned-RLC | Double Pendulum | DC motor (mixed) ‘ DC motor (full elec.)
Fault-free simulation time 570 ms 300 ms 190 ms 230 ms 240 ms
OPEN No. injected faults 4 6 6 3 6
Avg. simulation time | 587 ms 241 ms 208 ms 250 ms 250 ms
SHORT No. 1nj‘ected ~fault‘s 12 30 - 12 30
Avg. simulation time | 610 ms 309 ms - 240 ms 240 ms
No. inj faul 4
Voltage Source o mj.ected.au t.s 6 6 3 6
Avg. simulation time 48s 1.28 s 1.5s 450 ms 530 ms
No. injected faults 12 30 30 12 30
Current Source - - -
Avg. simulation time 155 2.1s 14 380 ms 550 ms

I .model motor macro lang=veriloga
2 x Instantiate Verilog—-AMS motor
3 ymotor motor shaft p n

4 % Instantiate load resistor

5 rload n 0 1e09
6
7
8

# Initialize transient simulation

.tran lu lsec
« Define circuit alteration
9 .alter
10 ymotor motor_1 shaft p n
11 = List of all the faulty circuits

12 .end

Listing 1. Sketch of SPICE code to control the simulations.

the simulation is run only once for all comparisons, writing
all results to the dedicated file.

Table IV shows the injection and simulation results derived
from the DC motor model introduced and illustrated in this
paper as a running example. Both the already presented ver-
sions of the motor are reported: the original electro-mechanical
description and the analogous circuit. The table also shows the
results of the same operations on other test cases, such as the
RLC circuit, the Tuned-RLC (i.e., the electrical equivalent of
the Mass-Spring-Damper) [19] and from the electrical equiva-
lent of a double pendulum [24]. Specifically, the results refer to
injection regarding the number of different faults (by position)
injected into the circuit for each fault model. The results in
the table also cover simulation: the time values reported are of
both faulty and fault-free circuits. These times refer to a 30-
seconds simulated behavior, and the circuit receives always
the same input signal. Simulating faulty systems usually takes
longer because faults add more overhead to system behavior.

VI. CONCLUSIONS

The article proposes techniques to support the functional
safety in a CPS related to fault modeling and injection through
physical analogies. Specifically, an automatic flow has been
proposed which can inject faults into multi-domain models and
create an efficient simulation environment. The mechanical
part of these models is translated to its electrical equivalent
through analogy in order to simulate the entire system as a full
electrical network. Then, by simulating the full electrical net-
work enriched with behavioral electrical faults, a mechanical
fault taxonomy has been inferred by systematically studying
the faulty behaviors.

The future development of this work is to make this method-
ology scalable: a system can be divided into parts to simplify
the application of the proposed methodology. Each one of
these subsystems can be manipulated individually and then
reassembled during simulation based on SPICE simulators.

1 ‘include “disciplines .vams”

2 ‘include “constants.vams”

3 ‘timescale lus / lus

4 module motor(shaft, p, n);

5 /! PARAMETERS

6 // Motor constant (V-s/rad)

7 parameter real km = 4.5;

8 // Flux constant (N-m/A) = Kt

9 parameter real kf = 4.5;

10 // Inertia of the shaft (N-m—s2/rad)

11 parameter real js = 1.2;

12 /!l Drag rotating friction of the shaft (N-m-s/rad)
13 parameter real ds = 0.1;

14 // Motor winding resistance (Ohms)

15 parameter real r = 5.0;

16 // Motor winding inductance (H)

17 parameter real 1 = 0.02;

18 // Inertia of the wheel (N-m—s2/rad)

19 parameter real jw = 0.005;

20 // Drag rotating friction of the wheel (N-m-s/rad)
21 parameter real dw = 0.1;

22 // PORTS

23 output shaft;

24 input p, n;

25 // NODES

26 electrical p, n;

27 // Internal nodes.

28 electrical nl, n2;

29 rotational_omega shaft, rgnd;

30 /! Reference nodes.

31 ground rgnd;

32 /1 BRANCHES

33 branch (p, nl) Vm;

34 branch (nl, n2) RI1;

35 branch (n2, n) LI1;

36 branch (shaft, rgnd) bshaft;

37 //  BEHAVIOR

38 analog begin

39 // Electrical model of the motor winding.
40 V(Vm) <+ km s Omega(bshaft);

41 V(R1) <+ r = I(R1);

42 V(L1) <+ 1 % ddt(I(L1));

43 // Physical model of the shaft.

44 Tau(bshaft) <+ +kf = I(Vm);

45 Tau(bshaft) <+ —(ds + dw) = Omega(bshaft);
46 Tau(bshaft) <+ —(js + jw) = ddt(Omega(bshaft));
47 end

48 endmodule

Listing 2. Original DC motor model, fault-free.



1 ‘include “disciplines.vams”
2 ‘include “constants.vams”
3 ‘timescale lus / lus
4 module motor_el(shaft, p, n);
5 /1 PARAMETERS
6 // parameters equivalent to the first model
7 /! PORTS
8 output shaft;
9 input p, n;
10 // NODES
11 electrical p, n;
12 electrical nl, n2, n3, n4, n5;
13 rotational_omega shaft, wheel;
14 ground n;
15 /! BRANCHES
16 branch (p, nl) Vm;
17 branch (nl, n2) Rm;
18 branch (n2, n3) Lm;
19 branch (n3, n4) Vback;
20 branch (n4, n5) Lsw;
21 branch (n5, n) Rsw;
22 //  BEHAVIOR
23 analog begin
24 V(Vm) <+ km == I(Vm);
25 V(Rm) <+ r % I(Rm);
26 V(@Lm) <+ | % ddt(I(Lm));
27 V(Vback) <+ — kf % I(Vback);
28 V(Lsw) <+ (lIs = lw) = ddt(I(Lsw));
29 V(Rsw) <+ (rs — rw) = I(Rsw);
30 end
31 endmodule
Listing 3. Full electrical DC motor model, fault-free.
1 ‘include “disciplines.vams”
2 ‘include "constants.vams”
3 ‘timescale lus / lus
4
5 module motor_el(shaft, p, n);
6 /! PARAMETERS
7 // parameters equivalent to the first model
8 // PORTS
9 output shaft;
10 input p, n;
11 // NODES
12 electrical p, n;
13 electrical nl, n2, n3, n4, n5, x;
14 rotational_omega shaft, wheel;
15 ground n;
16 // BRANCHES
17 branch (p, nl) Vm;
18 branch (nl, x) Rm;
19 branch (x, n2) fault;
20 branch (n2, n3) Lm;
21 branch (n3, n4) Vback;
22 branch (n4, n5) Lsw;
23 branch (n5, n) Rsw;
24 //  BEHAVIOR
25 analog begin
26 V(Vm) <+ km = I(Vm);
27 V(Rm) <+ r = I(Rm);
28 V(@Lm) <+ | * ddt(I(Lm));
29 V(Vback) <+ - kf = I(Vback);
30 V(Lsw) <+ (lIs = 1w) = ddt(I(Lsw));
31 V(Rsw) <+ (rs — rw) * I(Rsw);
32 V(fault) <+ I(fault) = 1e09; // open fault
33 end

34 endmodule

Listing 4. Full electrical DC motor model, open failed.
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