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Abstract—Instruction set simulators (ISSs) model the func-
tional behavior of embedded processors for early software devel-
opment. While they offer high simulation speeds, an ISS usually
does not model the timing behavior of the processor accurately.
Existing software performance simulators are typically either spe-
cific to a certain microarchitecture or their description language
mixes functional and microarchitectural aspects.

In this paper, we introduce CorePerfDSL, an architecture
description language (ADL) specifically designed to model the
timing behavior of processor microarchitectures for software
performance estimation. CorePerfDSL is clearly separated from
any functional description of the modelled processor by a generic
trace definition. As such, it is well suited to generate performance
simulators that can be paired with an existing ISS, which supplies
an execution trace. In addition, CorePerfDSL provides a high
degree of flexibility, supporting the fast generation of models
for various microarchitecture variants, which can be used for
rapid architectural exploration. We demonstrate the flexibility of
CorePerfDSL by describing several variants of a single-issue five-
stage RISC-V microarchitecture and estimate their performances
for a software benchmark program.

Index Terms—ISS, VP, ADL, Microarchitecture, Pipeline

I. INTRODUCTION

To cope with the increasing complexity of today’s embedded
systems, and in order to meet strict time-to-market demands,
modern design methodologies rely heavily on abstract com-
puter models, so-called virtual prototypes (VPs), of the target
hardware for early software development. Besides the possi-
bility to verify the developed software early on, VPs also offer
the opportunity to conduct an architectural exploration of the
design space prior to the development of the system.

Typical tools used during abstract system modelling are so-
called instructions set simulators (ISSs), which simulate the
functional behavior of a processor at instruction set archi-
tecture (ISA) level [1] [2]. They can be used as processor
models within a VP or as stand-alone simulators. While ISSs
typically offer high simulation speeds, they usually do not
model microarchitectural aspects of the target processor. As
such, they are not able to provide reliable estimations regard-
ing the software performance on the processor. To improve
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Fig. 1. Performance simulation setup with ISS and independent estimator.

timing estimations, different performance simulators have been
proposed. Some of these simulators use detailed functional
models of the microarchitecture [3], at the cost of reduced
simulation speed. Other approaches incorporate abstract, non-
functional timing models [4] or statistical methods [5], in an
attempt to maintain high simulation speeds.

As a support of rapid architectural exploration, so-called
architecture description languages (ADLs) exist. Behavioral
ADLs, which describe the functional behavior of a processor
on an abstract level, are frequently used to automatically
generate ISA-specific parts of an ISS [6] [7]. For performance
simulators, similar approaches exist, using ADLs that also in-
clude a description of the processors microarchitecture [8] [9].
Since these languages attempt to describe both aspects, though,
the description of the timing behavior becomes dependent on
the functional description.

However, for a more flexible approach, an ADL that solely
focuses on the processor’s timing behavior is beneficial. Such
an isolated description can be used to specify abstract, non-
functional timing models of the processor, without unneces-
sary specification of functional aspects. It is, as such, well
suited to explore the impact of different microarchitectures
on software performance. In addition, it allows to generate
ISS-independent performance estimators, which can, with low
effort, be combined with existing simulation setups. Fig. 1
illustrates such a concept. A behavioral ADL is used to
implement an ISS, while the estimator is setup independently
through an ADL focusing on timing behavior. To provide
a connection between ISS and estimator, an ISS-monitor is
required, to generate a trace for the estimator. An efficient
description of the estimator generically defines the required
content of the trace. Combining such a generic trace definition
with the behavioral ADL, enables the flexible adaptation of the
ISS-monitor.

In this paper, we propose CorePerfDSL, an ADL, which is
suited for the approach presented in Fig. 1. For this purpose,



CorePerfDSL contributes the following features:

¢ An isolated, non-functional description of the processor’s
timing behavior, capable of modelling essential microar-
chitectual aspects, including structural, data and control
hazards.

« High flexibility of the description, suited for rapid archi-
tectural exploration, by dividing the instructions’ work-
loads into small microactions which can be assigned to
pipeline stages.

o A generic trace definition, for linking the performance
simulator up with any ISS via an automatically generated
ISS monitor.

e Mechanisms to incorporate external dynamic timing mod-
els to describe complex timing behaviors and to enable
reuse of existing models.

We demonstrate the flexibility of CorePerfDSL, as well as
its capability to generate efficient performance simulators, by
creating proof-of-concept estimators based on CorePerfDSL.
The estimators deliver well-founded performance estimates for
12 variants of a single-issue, five-stage RISC-V microarchi-
tecture, and achieve simulation speeds of up to 15 million
instructions per second (MIPS).

The rest of the paper is structured as followed. Sec. II
contains a brief overview of related work. Then, CorePerfDSL
is presented in detail in Sec. III. The results of the proof-of-
concept simulations are presented in Sec. IV. Finally, Sec. V
concludes this paper.

II. RELATED WORK

Today a number of ISSs exist, which are used in academical
and industrial contexts. Examples are QEMU [1], Spike [10],
ETISS [2] or DBT-RISE [11]. As discussed, these simula-
tors focus on modeling functional behavior and are designed
for high simulation speeds. They are generally not able to
provide reliable estimations regarding the timing behavior of
the processor by themselves, but can be incorporated into
performance simulation setups (ref. Fig. 1).

The SMARTS [5] and ESECS [12] performance simulators
combine ISSs with cycle-accurate models. Statistical sampling
on the cycle-accurate model is applied in order to increase
simulation speed. The work in [13] also incorporates cycle-
accurate and abstract models, but uses a machine learning
method. These approaches, however, still rely on the existence
of a cycle-accurate implementation or performance model.

The gem5 [3] simulator integrates detailed functional mod-
els of the microarchitecture of the target processor. As this
level of detail comes at the cost of reduced simulation speed,
this approach is not well suited for rapid software devel-
opment. In contrast, the performance simulators in [4] [14]
and [15] extend functional ISS-environments with detailed
timing models, while abstractly modeling the functional be-
havior on ISA-level. This approach is similar to the one
described in Fig. 1. However, to the best of our knowledge,
none of these simulators provides an independent description
of the timing models, which would enable the combination
with other existing ISSs.

Several ADLs have been proposed in the literature. They are
commonly classified as structural, behavioral or mixed ADLs.

MIMOLA [16] is a structural ADL which describes the
processor’s structure as a netlist of connected modules. It
targets hardware synthesis and not primarily the generation
of performance simulators. Also, as its description is compar-
atively low-level, it is laborious to modify and not well suited
for architectural exploration.

Examples of behavioral ADLs are nML [6], ISDL [7]
or SAIL [17]. These languages are designed to describe a
processor’s behavior in terms of its instruction set. They are
frequently used to generate ISSs. While ISDL allows to specify
the latency of operations, behavioral ADLs are generally
not able to capture enough information to model instruction
dependencies or concurrencies as they occur in pipelines.

Mixed ADLs, as for example LISA [8], EXPRESSION [9],
MADL [18] or ArchC [19], combine structural and behavioral
aspects. These languages are in general capable of generating
performance simulators of the described processors. However,
these approaches do not clearly separate the description of
functional and timing behavior. HARMLESS [20] isolates the
description of the processor’s microarchitecture, to allow for
a purely functional description of the processor. However, it
is not possible to describe the timing behavior independently
of the functionality.

None of the presented ADLs are as such able to provide an
isolated, non-functional description of the processor’s timing
behavior, suited for rapid architectural exploration.

III. THE COREPERFDSL LANGUAGE

In this section, we first give an overview over the
CorePerfDSL language and then discuss the concepts in detail.

A. Overview

Fig. 2 presents an overview of the components of the
CorePerfDSL language. Conceptually, these components can
be grouped into four sections: Microaction, external model,
instruction and core section.

The microactions are used to break down each instruction
of the processor into small, manageable sub-behaviors, for
example the fetch of the instruction word. For each such
microaction the required resources can be defined, which
model the required hardware timing, e.g., the delay of the
instruction read interface. Additionally, so-called connectors
can be defined to describe data dependencies, e.g., for an
instruction fetch the program counter (PC) value must be
known while an PC increment microaction supplies the next
PC value. Resources and microactions can also be declared
as virtual components, which act as placeholders for quickly
swapping definitions of resources or microactions without
having to redefine the complete pipeline model, which is
discussed in Sec. III-E.

The capability to include external models within the
CorePerfDSL provides the ability to incorporate dynamic
timing models written in an external language (e.g. C++). This
enables the modelling of more complex, system specific timing
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Fig. 2. Overview of the CorePerfDSL language.

behaviors which cannot easily be generalized. For example, for
an instruction fetch, the timing could be determined by calling
an external instruction cache model. This calling mechanism
allows the reuse of already existing models, for instance from
an existing functional VP simulation. External models can be
specified either as resource or connector model components.
Trace values of the ISS, which are required by the external
timing models, e.g. the value of the PC for the instruction
cache, are defined through corresponding components.

The instruction section defines firstly how each instruc-
tion is broken down into the microactions. Secondly, the
trace values of the external timing models are mapped to
the simulation variables of the ISS. This mapping enables
the definition of a generic trace, which can be used for
the automatic generation of an ISS-monitor (ref. Fig 1). To
avoid unnecessary coding overhead, similar instructions can
be bundled through instruction group components.

The purpose of the core sections is to describe the ac-
tual microarchitecture in form of one or several so-called
core performance models (CorePerfModel). To this mean, the
specified microactions are assigned to stages, which in turn
are organized in pipelines. The CorePerfModel selects one of
these pipeline models as well as the appropriate connector
models from the external model section. In addition, the
CorePerfModel resolves any virtual microactions or resources
by replacing them with a non-virtual counterpart, allowing
to rapidly explore different variants by quickly swapping
microaction and resource definitions without having to redefine
the complete pipeline.

B. Microaction Section

1) Microaction definition: Microactions are a central com-
ponent of our CorePerfDSL. They break down the instructions
into the sub-steps that can be executed within one stage of
the processor pipeline. The mapping of these microactions on
pipeline stages later allows to compute the timing behavior of
the instructions as it is caused by a pipelined execution.

Since they represent actions, which are performed by the
processor, microactions are typically associated with a hard-
ware resource, as for example the arithmetic logic unit (ALU)
or memory ports. In CorePerfDSL, this relation is expressed by
assigning a resource component to one or several microactions.
Assigning a specific resource to multiple microactions is
explicitly allowed, in order to describe resource sharing, which
may result in structural hazards.

In addition, some microactions can only start to execute
when certain data is available, e.g. the PC. These kind of
dependencies can cause data and control hazards that add
additional delays due to pipeline stalls. To express these
dependencies, CorePerfDSL provides connector components
which can be assigned to microactions, either as inputs or
outputs.

It is important to recall that CorePerfDSL focuses on the
description of the timing behavior of a microarchitecture. As
such, resource components merely model the delay of the
corresponding hardware. Similar, connector components do
not pass the actual data values (e.g. the value of the next PC),
but simply indicate the availability of the associated data. The
functional behavior of the microactions is, thus, explicitly not
described.

Based on the assigned resources and connectors, the timing
behavior of the microactions can be described. When an mi-
croaction gets activated, it waits until the data value, modelled
by its input connector, is available. If the microaction does not
have an input connector assigned to it, this waiting period is
dropped. Once the input connector is available, the microaction
starts executing. This is modelled through the resource, which
adds a resource specific delay. After this delay has passed, the
microaction is considered to be completed. If the microaction
has an output connector, the corresponding data value is now
set as available.

It is important to note that the output connector of a
microaction is not directly connected to an input connector.
Instead, connectors are related via so-called connector models
(see Sec. III-C). This allows the description of dynamic
dependencies. A typical example is the modeling of branch
prediction schemes. In this context, it makes sense to de-
fine two output connectors: One to model the availability
of the predicted PC, and one to describe the availability of
the actually computed PC, in case of a misprediction. The
branch prediction scheme itself is represented by a connector
model. Depending on whether a misprediction is detected, the
connector model maps the appropriate output connector to the
input connectors of PC-dependent microactions.

Listing 1 illustrates the definition of microactions in
CorePerfDSL. The microaction uA_ID models the instruc-
tion decoding. It has no data dependencies that can lead to
pipeline hazards and, therefore, only gets assigned a resource,
Decoder. In contrast, the microaction that describes the in-
struction fetch, uA_IF, requires the PC, which can be subject



Connector {PC, PC_p, PC_np, R_a, R _b, R_d}
Resource {RAM_R, PC_Gen, Decoder, ALU, ...}
Microaction{
uA_PC_Gen (PC => PC_Gen -> PC_p),
uA_IF (PC => RAM_R),
uA_ID (Decoder),
uA_OF_A (R_a),
uA_ALU_branch (ALU => PC_np),
uA_ALU_arith_fw (ALU -> R_d)
}

Listing 1. Definition of connector, resource and microaction components

to control hazards for branch instructions. This dependency is
described by the PC connector, which is placed as an input
in front of the RAM_R resource. The generation of the PC
value is modelled by uA_PC_Gen. After receiving the current
PC value, PC, this microaction generates the PC for the next
instruction, which is described by the PC_p output connector,
placed behind the PC_Gen resource. However, as discussed
above, for a branch instruction, PC_p merely represents a
predicted PC. In case of a misprediction, a control hazard
occurs and the actual (not predicted) PC, PC_np is first
available once the branch is evaluated. uA_ALU_branch
describes the evaluation of the branch, using the ALU resource.

Listing 1 also illustrates two microactions related to arith-
metic calculations. uA_OF_A models the fetch of the operand
A form the processor’s registers. If the operand is the result
of a previous instruction, a data hazard can occur. This data
dependency is described by assigning the connector R_a,
which is interpreted as an input, to uA_OF_A. The arithmetic
operation itself is modelled by uA_ALU_arith_fw. This mi-
croaction uses the ALU resource to update the destination reg-
ister of the instruction, R_d. Note that uA_ALU_arith_fw
describes an arithmetic operation for a pipeline with data
forwarding, as the data associated with R_d is available to
the next instruction right after it has been calculated by the
ALU.

2) Resource behavior and virtualization: The resources
of Listing 1 have been defined without their timing behav-
ior. As a default, a timing of one clock cycle is assigned.
However, CorePerfDSL also allows the specification of larger
or dynamic delays. This is illustrated in Listing 2. In this
example, the resource Multiplier has been defined with
a static delay of three clock cycles. Similarly, it is also
possible to assign a dynamic delay, by providing the name of
a resource model component (see Sec. III-C), which will be
used to calculate the delay. For instance, in Listing 2 the read
port of the data memory is provided as a dynamic resource,
DRAM_R_dyn, using the DRAM_model resource model.

Resource {Multiplier(3)}

Resource {DRAM_R_sta, DRAM_R_dyn (DRAM_model) }

virtual Resource vDRAM_R

Microaction{
uA_MEM_R
UuA_MEM_R_fw

(VDRAM_R) ,
(VDRAM_R -> R_d)
}

virtual Microaction{vuA_MEM_R, vuA_ALU_arith}

Listing 2. Definition of dynamic resources and virtual components
In order to flexibly describe different microarchitectures,
it is often useful to postpone the decision on how to model
a specific resource until the definition of the CorePerfModel

(Sec. III-E). CorePerfDSL allows to do this through so-called
virtual resources. Virtual resources are essentially placehold-
ers, which can be assigned to microactions. During the defini-
tion of the CorePerfModel, they are then replaced with non-
virtual resources. In Listing 2, the virtual resource vDRAM_R
is used as a placeholder for the read port of the data memory.
This can later be replaced, for instance to use a dynamic
model (DRAM_R_dyn) or to use the same memory port as the
instruction fetch (RAM_R), in order to model resource sharing.

Similarly, CorePerfDSL also allows the definition of virtual
microactions, which can be used as placeholders during the
definition of microaction mappings (Sec. III-D) and stages
(Sec. III-E). For example, Listing 2 defines the virtual microac-
tion vuA_MEM_R. It can later be replaced by a microaction
modelling a data load operation with (uA_MEM_R_fw) or
without data forwarding (uA_MEM_R).

C. External Model Section

The external model section provides the ability to incorpo-
rate models which are implemented in a different language
(e.g. C++4) into the CorePerfDSL description. This enables
the modelling of complex, system specific behaviors, as for
example branch prediction schemes, and also allows the reuse
of existing timing models. External models can be specified
either for resources or connectors.

As discussed in combination with Listing 2, resource models
are used to assign a dynamic behavior to the resources of
the microaction section. Listing 3 shows the definition of a
resource model for the data memory, DRAM_model. Besides
its name, a resource model get assigned two attributes. First,
using the 1ink keyword, a descriptor of the file containing the
external model is specified, in this case a C++ file. Second,
under trace, any number of so-called trace values can be
specified.

The trace values define which parameters need to be
provided by the ISS for computing the timing. A memory
model like the DRAM_model, for instance, is likely to require
the address of a memory access in order to calculate the
corresponding delay. It is worth noticing that the name of the
defined trace values does not need to correspond to actual
state names of the ISS. This relation will be established by
the instruction section (Sec. III-D).

TraceValue {mem_addr}

ResourceModel DRAM_model (
link : SimpleDRam.cpp
trace: mem_addr

Listing 3. Definition of a resource model component

As mentioned in Sec. III-B, the intention of connector
models is to model data and control hazards. A connector
model determines when an input of one microaction becomes
available based on the availability of one more more outputs
of other microactions, in order to model the flow of data.
Listing 4 shows two example connector models.

The Register_model connector model describes data
hazards. To do so, it has the result register R_d connector
assigned to it as an input, and the operand registers R_a and



TraceValue {pc_val, ra_addr, rb_addr, rd_addr}
ConnectorModel Register_model (

link : StandardRegister.cpp

trace : {ra_addr, rb_addr, rd_addr}
connectorIn : R_d

connectorOut: {R_a, R_Db}

)
ConnectorModel DynBranchPredict_model (

link : DynamicBranchPredict.cpp
trace : pc_val
connectorIn : {PC_p, PC_np}

connectorQut: PC

Listing 4. Definition of connector model components

R_b as outputs. The Register_model can thus set the
availability of R_a and R_D, based on R_d and the addresses
of the used registers (ra_addr, rb_addr, rd_addr).

DynBranchPredict_model 1is used to model the
branch prediction schemes and control hazards within the
processor pipeline. With regards to Listing 1, the next PC,
PC_p, is generated by the uA_PC_Gen microaction, unless
a misprediction occurs during the execution of a branch
instruction. In that case, uA_ALU_branch provides the
next PC, PC_np. DynBranchPredict_model takes both
PC_p and PC_np as inputs, and, depending on whether a
misprediction occurred, determines when the PC connector at
its output is available.

D. Instruction Section

In the instruction section the breakdown of the instructions
into microactions is defined. Furthermore, for each instruction,
a mapping of the trace values to observable variables in the
ISS need to be specified, to enable the generation of an
ISS-monitor that can provide the required trace for timing
computation.

InstrGroup{
Arith (ADD, SUB, [2?1),
Branch (BNE, BEQ, ...),

}
MicroactionMapping{

[ALL] : {uA_PC_Gen, uA_IF, uA_ID},

Arith : {uA_OF_A, uA_OF_B vuA_ALU_arith, vuA_WB},
Branch: {uA_OF_A, uA_OF_B, uA_ALU_branch},

LW : {uA_OF_A, VuA_MEM_R, ...},

Listing 5. Definition of microaction mapping components

Listing 5 presents an example of the specification of the
required microactions for an instruction. As similar instruc-
tions typically use the processor pipeline in a similar manner,
they often have the same microactions assigned to them. To
avoid an unnecessary coding overhead, CorePerfDSL allows
to bundle similar instructions into instruction groups. For ex-
ample, the Arith instruction group contains the instructions
ADD and SUB. In addition, the [?] keyword defines that
any instruction, which is not explicitly mapped or part of
another instruction group is also a member of Arith. Based
on this, the microactions can be assigned either to individual
instructions (e.g. LW) or instruction groups. For instance, for
the execution of the instructions of the Arith group two
operands are fetched (uA_OF_A and uA_OF_B), the arith-
metic operation is carried out (vuA_ALU_arith) and the

result is written back to the processor’s registers (vuA_WB).
Microactions which are required by every instruction of the
ISA can be assigned using the [ALL] keyword. Finally, it is
worth noticing that virtual microactions have been used for
the mapping of Arith and LW, to increase flexibility.

The mapping of the trace value follows a similar approach
as that of the microactions. For every defined trace value
a descriptor has to be specified in form of a string. In
principle, this description could differ from instruction to
instruction. However, in many ISS implementations, variables
are consistently named, and as such the same descriptors can
be used for all instructions of the ISA. Listing 6 shows an
example of the definition of a trace value mapping component,
assuming a consistent naming of the ISS variables.

TraceValueMapping{
[ALL] : { pc_val : "pC",
ra_addr : "REG_S1",

Listing 6. Definition of a trace value mapping component

E. Core Section

1) CorePerfModel definition: In the core section, one or
several CorePerfModels are defined. Each of these CorePerf-
Models describe a variant of a microarchitecture.

The central component of a microarchitecture is its pipeline.
Listing 7 shows the definition of a pipeline component. As a
first step, the microactions are assigned to appropriate stages.
Microactions that are grouped into the same stage are consid-
ered to be executed in parallel. For instance, it is common
that the instruction fetch and the generation of the next
PC are executed simultaneously. Listing 7 therefore specifies
IF_stage to contain uA_TIF and uA_PC_Gen. The other
stages are defined in a similar manner. It is worth noticing,
that the virtual microaction vuA_ALU_arith is used during
the definition of EX_stage. The stages are then arranged into
a pipeline, as illustrated by the SimplePipeline example.
At this point, CorePerfDSL only supports the definition of in-
order single-issue pipelines. This means that each stage can
only handle one instruction at the time, and a stage can only
be completed, if the next stage is available.

Stage({
IF_stage (uA_IF, uA_PC_Gen),
ID_stage (uA_ID, uA_OF_A, uA_OF_B),
EX_stage (VvuA_ALU_arith, uA_ALU_branch, ...),
[

MEM_stage
}
Pipeline SimplePipeline (IF_stage —> ID_stage —-> EX_stage
- ...)

Listing 7. Definition of stage and pipeline components

Listing 7 shows the definition of a single pipeline. However,
it should be pointed out that other stage and pipeline variants
could easily be added. For example, further stage variants
could be defined to merge EX_stage and MEM_stage, or to
split IF_stage into two stages. Additional pipeline variants
could then be specified that pick the appropriate stages to
describe a four-stage and six-stage pipeline, respectively. The



only limitation in this context is that a pipeline cannot use
multiple stages which contain the same microaction.

Based on the pipeline components, one or several CorePerf-
Models can be specified. Listing 8 presents an example of
the definition of a CorePerfModel, SimpleRISCV. With the
keyword use, the CorePerfModel specifies the used pipeline
as well as which external connector models are to be employed
(ref. Listing 4). Note that external resource models are not
selected in this manner, as they are implicitly specified through
the resources of the used microactions. If the specified pipeline
contains virtual components, either through the used stages or
microactions, these components are replaced by non-virtual
counterparts through the assign keyword. SimpleRISCV,
for instance, replaces vDRAM_R to use the same static model
for the instruction and data memory read port (ref. Listing 1),
and selects the appropriate microactions to describe a microar-
chitecture with data forwarding (ref. Listing 2).

CorePerfModel SimpleRISCV (

use Pipeline : SimplePipeline

use ConnectorModel : {
Register_model,
DynBranchPredict_model

}

assign Resource : {
vDRAM_R = RAM_R,

}
assign Microaction : {
VvuA_ALU_arith = uA_ALU_arith_fw,

Listing 8. Definition of a CorePerfModel component

2) Conceptual view: The definition of the CorePerfModel
concludes the CorePerfDSL description. Based on the de-
scribed components, it is now possible to generate a conceptual
view of the modelled microarchitecture. This is depicted in
Fig. 3, for the CorePerfModel specified in Listing 8.

The described microarchitecture, SimpleRISCV, con-
tains a pipeline and two connector models. The pipeline,
SimplePipeline, is divided into five stages, each con-
taining one or several microactions. The microactions contain
resources (rectangular boxes) and connectors (boxes with
rounded edges). The input and output connectors of the
microactions are mapped to the outputs and inputs of the
appropriate connector models, respectively.

Combining this view of the mircoarchitecture with the
microaction mapping, as shown in Listing 5, allows to describe
the usage of the microarchitecture by a given instruction
in terms of required microactions. For instance, in Fig. 3
all microactions which are used by an ADD instruction are
depicted gray tinted.

Based on this view, the timing behavior of a given in-
struction can be described. For the given example, the ADD
instruction enters the IF_stage as soon as the stage is
available, and the two microactions uA_IF and uA_PC_Gen
are activated. As discussed in Sec. III-B, the microactions will
be executed once the PC connector is available. The execution
is modelled by adding the delay of the corresponding resource.
After the execution of uA_PC_Gen, PC_p is set and passed

to DynBranchPredict_model, in order to determine PC
for the next instruction. The ADD instruction moves to the
next stage, ID_stage, once both microactions in IF_stage
have been executed and ID_stage is available. The behavior
of the other stages follows the same concept.

It is worth noticing that this view allows to estimate per-
formance in an instruction-by-instruction manner, rather than
keeping track of the pipeline’s state cycle-by-cycle.

IV. EXPERIMENTAL RESULTS

In order to show that the language is capable of modelling
the timing behavior of typical microarchitectures, as well
as to demonstrate the flexibility of the approach, we use
CorePerfDSL to estimate the performance of a variety of mi-
croarchitecture variants. As an early proof-of-concept, the used
estimators are implemented manually, using the CorePerfDSL
descriptions as guidance. However, since the estimators strictly
follow the conceptual view of the CorePerfDSL, as presented
in Fig. 3, code generators can be used in the future to automate
this process.

The following subsection describes the used microarchi-
tecture variants. In Sec. IV-B, the simulation setup and the
obtained performance estimates are presented.

A. Architecture Variants

An artificial, but characteristic, microarchitecure, referred
to as SimpleRISCV, is defined as a basis for our exper-
iments. SimpleRISCV is a single-issue five-stage imple-
mentation of the RISC-V ISA. To demonstrate the flexibility
of CorePerfDSL, several variants of SimpleRISCV are de-
scribed and modelled, combining the subsequently described
features. Note that the example presented in Fig. 3 describes
a variant of SimpleRISCV.

SimpleRISCV can be described with and without data
forwarding. In case of no data forwarding, data provided by
an instruction will not be available to the following instructions
before it is written to its destination register during the
write-back stage (WB_stage). If data forwarding is applied,
the result of an instruction will be available for the next
instruction right after it has been computed in the execution
stage (EX_stage) or after it has been read from memory
(MEM_stage). Fig. 3 depicts a variant of SimpleRISCV using
data forwarding.

Three branch prediction schemes can be applied to
SimpleRISCV: Non, static or dynamic branch prediction. If
no branch prediction is used, a branch instruction does not
generate a predicted PC (PC_p) in IF_stage. Thus, for
these type of instructions, the next PC will be generated by
EX_stage, causing the next instruction to always stall for
two cycles. In case of static variant, a fixed not-taken predic-
tion is made, i.e. it is always predicted that the branch is not
taken. For the dynamic branch prediction, a common approach
using a 2-bit branch history buffer is applied [15], which in-
corporates earlier evaluations of the branch into its prediction.
The example in Fig. 3 shows a variant with dynamic branch
prediction, modelled by DynBranchPredict_model.
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Fig. 3. Conceptual view of the modelled microarchitecture. (Gray tinted mircoactions are the ones used by an ADD instruction)

As another feature, SimpleRISCV can either be described
with a Harvard or a von Neumann architecture. In case of
the von Neumann architecture, IF_stage and MEM_stage
share the same memory read port. As such, no instruction fetch
can be carried out while a load instruction is in MEM_ stage,
causing a structural hazard. Using a Harvard architecture, both
stages use unique read ports. Assigning the same resource to
multiple microactions, as depicted in Fig. 3, can be used to
describe resource sharing and, in this case, to model a von
Neumann architecture.

Finally, the SimpleRISCV can be used with different
resource models. As a default, a delay of one clock cycle
is assumed both for the processors multiplier as well as for
the memory ports. Alternatively, a static three cycle delay for
the multiplier can modelled. For the memory ports, a dynamic
model can be used, which returns a delay of five cycles for a
cache miss with a cache miss rate of 1/100 and otherwise a
delay of one cycle. The SimpleRISCV variant presented in
Fig. 3 uses the default models.

B. Performance Simulation

To conduct the performance simulation for the various
SimpleRISCV variants, we pair our estimators with an ISS
called ETISS [2]. This simulator offers a number of plugin
interfaces, which make it possible to observe the executed
instructions with rather low effort, and it is therefore well
suited to generate the instruction trace for the performance
estimation. As a test program, the Dhrystone benchmark [21],
using one million loops, is executed by ETISS. Executing the
simulation setup without the performance estimation activated,
ETISS achieves a simulation speed of approximately 41.12
million instructions per second (MIPS).

1) Simulator evaluation: As a first evaluation of the
developed approach, an oversimplified model of the
SimpleRISCV is simulated. This model does not consider
structural, data or control hazards, and assumes that every

resource has a fixed delay of one clock cycle. This means
that every instruction only spends one cycle in each state. The
results of this initial simulation are presented in Tab. I. The
estimated cycle-per-instruction (CPI) is at 1, as an estimate
of the performance of the target processor. The number of
cycles exceeds the instruction count by exactly four cycles as
expected for a five-stage pipeline to account for the ramp-up
phase. For this scenario, we reached a simulation speed of
approximately 15 MIPS, which characterizes the penalty due
to the ISS-monitor and the performance estimation.

TABLE I
RESULTS FOR A SIMPLIFIED VERSION OF SIMPLERISCV
Number of instructions 710,086,326
Estimated number of cycles 710,086,330

Est. performance of target processor (CPI) 1
Simulation performance (MIPS) 15.1433

2) Modelling of essential timing behavior: Next, we
model 12 variants of the SimpleRISCV combining the
data forwarding and branch prediction features, described in
Sec. IV-A, with a Harvard and von Neumann architecture,
respectively. This illustrates the ability of CorePerfDSL to
model structural, data and control hazards. Note that all
resources are modelled with a delay of one cycle in this
scenario. The results of the simulations with these 12 variants
are shown in Tab. II, presenting the estimated performance
of the modelled microarchitecture in CPI, and the achieved
simulation speed in MIPS.

The obtained estimates fit typical expectations for these
kind of microarchitectures. For instance, for the von Neumann
variant with data forwarding and dynamic branch prediction, a
performance of 1,27 CPI is estimated. Given the fact that load
instructions make up roughly 27% of the executed benchmark,
and taking into consideration that structural hazards are the
dominating cause for pipeline stalls for this SimpleRISCV
variant, this estimate is well-founded.

We observe a drop of simulation performance when using
the von Neumann architecture, to roughly 6 MIPS. This is




TABLE 11
RESULTS FOR SIMPLERISCV MICROARCHITECTURE VARIANTS
Architecture Forwarding Branch Est. target Simulation
prediction | perf. (CPI) | speed (MIPS)
No 1.59 15.07
No Static 1.52 13.97
Dynamic 1.48 12.27
Harvard No 123 15.09
Yes Static 1.15 13.92
Dynamic 1.11 12.72
No 1.68 6.67
No Static 1.60 6.44
von Neumann Dynamic 1.57 6.13
No 1.36 6.75
Yes Static 1.30 6.42
Dynamic 1.27 6.08

due to the fact that the simulator needs to run a scheduling
algorithm for the shared read port every time an instruction
fetch or a data load access is carried out, i.e. at least once
per instruction. However, given the proof-of-concept nature of
our current simulator, room for optimization of this algorithm
exists, and it is likely that the simulation performance can be
further improved.

3) Simulation of static and dynamic resources: Finally,
we simulate a SimpleRISCV variant with different resource
models. As the base variant, we use the SimpleRISCV with
Harvard architecture, which applies both data forwarding and
dynamic branch prediction. For the resource models, a single-
cycle or a three-cycle multiplier can be used, as well as a static
or a dynamic memory model, as discussed in Sec. IV-A. The
results of the simulations are summarized in Tab. III. Also
in this case the estimates seem well-founded. For example,
multiplications make up roughly 1% of the benchmark. This
fits the increase of 0.02 CPI when switching the multiplier
model to use two extra cycles, while applying the static
memory model (with the dynamic memory model, hazards
may overlap, explaining an increase below 0.02 CPI).

TABLE III
RESULTS FOR SIMPLERISCV WITH VARYING RESOURCE MODELS

Memory | Multiplier | Est. target perf. | Simulation speed
(CPI) (MIPS)
. 1-cycle 1.11 12.74
Static 3cycle 113 1254
Dynamic 1-cycle 1.17 12.37
Y 3cycle .18 11.60

V. CONCLUSION

In this paper, we have presented CorePerfDSL, a microar-
chitecure description language specifically designed to model
the timing behavior of processors during software performance
evaluation. CorePerfDSL provides a high degree of flexibility
in the description of the microarchitecture and is, therefore,
well suited for rapid architectural exploration.

The flexibility of CorePerfDSL has been demonstrated
through the modelling of multiple variations of a single-issue
five-stage pipeline implementation of the RISC-V ISA. The
results show that CorePerfDSL is capable of modelling the
essential timing behavior of this kind of processors, including
structural, data and control hazards. The simulation perfor-
mance of our approach reached up to 15 MIPS.
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