
978-1-6654-7332-3/22/$31.00 ©2022 IEEE

SafeX: Open Source Hardware and Software
Components for Safety-Critical Systems
Sergi Alcaide†, Guillem Cabo†, Francisco Bas†,‡, Pedro Benedicte†, Francisco Fuentes†,

Feng Chang†, Ilham Lasfar†, Ramon Canal‡,†, Jaume Abella†
†Barcelona Supercomputing Center (BSC)

‡Universitat Politècnica de Catalunya (UPC)

Abstract—RISC-V Instruction Set Architecture (ISA) emerges
as an opportunity to develop open source hardware without being
subject to expensive licenses or export restrictions. A plethora
of initiatives are nowadays developing systems-on-chip (SoCs)
and its components based on RISC-V targeting a wide variety
of markets. However, domains with safety requirements, such as
avionics, space, and automotive, impose SoCs to include support
to meet those requirements.

This work introduces the SafeX family of components, a set
of components providing SoC controllability, observability and
safety measures support. These components, developed by the
Barcelona Supercomputing Center with permissive open source
licenses, are intended to be the basis to make SoCs meet the
needs of domains with safety requirements. In particular, the
SafeX components developed so far include the SafeSU (multicore
statistics unit), the SafeTI (flexible and programmable traffic
injector), the SafeDE and SafeSoftDR (hardware and software
modules to enforce lockstep execution), and the SafeDM (module
to monitor diversity across cores).

Index Terms—safety, observability, controllability, MPSoC

I. INTRODUCTION

The RISC-V Instruction Set Architecture (ISA) [12] has
become extremely popular with the democratization of
hardware design, which makes hardware development – either
in the form of IP or actual SoCs – affordable even for small
companies and research institutions. In particular, RISC-V
ISA becomes a vehicle to develop microprocessors without
inheriting ISA licensing costs, as opposed to commercial
ISAs, and without relevant export restrictions, hence easing the
development and distribution (including commercialization) of
RISC-V based products worldwide.

In this context, a plethora of processors and SoCs have
emerged, with some of them becoming highly popular. Only
at the RISC-V International web portal [12] one can already
find more than 100 cores and SoCs, including IPs from
SiFive, Codasip, ETH Zurich/U. Bologna, Syntacore, Andes,
UC Berkeley, CloudBEAR, and Microchip, to name a few. For
instance, some popular cores and SoCs include LowRISC’s
Ibex core, Ariane and PULPino SoCs by ETH Zurich and the
University of Bologna, and a number of cores and SoCs based
on the Rocket one by SiFive and UC Berkeley.

Unfortunately, in general, those cores and SoCs do not offer
the support needed for their use in safety-related systems,
such as appropriate observability and controllability means,
and support to implement safety measures (e.g., Dual Core
Lockstep – DCLS). To our knowledge, only two product
families in the RISC-V arena provide safety compliance:
CAES Gaisler’s NOEL-V core and SoC [6] for the space

domain, and NSI-TEXE’s NS31A and other CPUs [11] for
the automotive domain. However, while part of NOEL-V IP
is offered as open source, this excludes safety and reliability
support, which is only distributed under commercial licenses.
Analogously, NSI-TEXE’s IP is not open source. Hence, there
is a gap in the RISC-V open source domain to provide cores
and SoCs meeting the requirements of safety-related systems.

To respond to this situation, the Computer Architecture
and Operating Systems interface (CAOS) group at the
Barcelona Supercomputing Center (BSC) is developing the
SafeX components family: a family of RISC-V compliant open
source – with permissive licences – hardware and software
components intended to enable RISC-V cores and SoCs meet
the requirements needed for their adoption in safety-related
systems. In particular, the CAOS group has already developed
some components including the following:

• SafeSU [3], [4]. A multicore interference aware hardware
statistics unit providing observability capabilities to
identify sources of interference, and controllability means
to set interference quotas.

• SafeTI [13]. A flexible and programmable hardware
traffic injector easing the test of functional and non-
functional features of an SoC.

• SafeDM [2]. A hardware module measuring the diversity
across two cores – typically running a task redundantly
– to support safety measures to manage scenarios with
lack of diversity.

• SafeDE [1]. A hardware module enforcing diversity
through time staggering across two cores – typically
running a task redundantly – to allow implementing a
form of DCLS.

• SafeSoftDR [10]. The software-only counterpart of
SafeDE to allow implementing a form of DCLS without
explicit hardware support.

Some of them are already offered as open source at
https://bsccaos.github.io/, whereas the rest will be
progressively released as their implementation reaches
enough maturity, which is proven through their integration
in commercial and highly mature SoC prototypes by
CAES Gaisler developed in the framework of H2020 De-
RISC [7] and H2020 SELENE projects [14]. Moreover, other
components providing watchdog and DCLS capabilities are
already in the CAOS roadmap.

The rest of this paper presents some background on
the development process of a safety-relevant system, and
the foreseen architecture of a safety-relevant microprocessor

Fig. 1. V-model of the development process of a safety-relevant system.

in Section II, the already developed SafeX components in
Section III, an illustrative example of use in Section IV, and
some conclusions in Section V.

II. BACKGROUND

A. Development Process of a Safety-Relevant System

Safety-related systems follow a development process
dictated by the corresponding domain-specific functional
safety standards, such as ISO26262 in automotive, DO178C
and DO254 in avionics, EN5012x in railway, etc. Such
development process can be abstracted as a V-model, as
shown in Figure 1. First, safety goals are specified and
safety requirements derived from those goals. The system
is architected accordingly mapping safety requirements to
components so that the latter jointly fulfill those requirements.
When architecting the system, safety measures needed to
manage unavoidable random hardware faults must already
be included. Then, the different units composing the system
architecture are designed and implemented. Verification steps
are already conducted at model and implementation level to
determine whether the system model and its components meet
their requirements by design. On the right side of the V-model,
testing (validation) activities start bottom up – from individual
components to the fully integrated system – gathering
empirical evidence of the adherence to specifications.

In that development process, safety measures must be
planned and effectively implemented during the architectural
design and implementation. In the same process stages
verification occurs, which normally requires controllability
means to enforce specific behavior of the components and
the system model. Finally, during the testing campaign,
observability means become crucial to gather detailed evidence
used to assess whether the system behaves according to
its specifications with relevant data. Therefore, appropriate
support is needed to deploy safety measures, to exercise
control of the system, and to achieve sufficient observability.

B. A Safety-Relevant Microprocessor

SafeX components have no specific constraint to be
integrated on a wide variety of microprocessor architectures.
However, they have already been integrated in an SoC like the
one illustrated in Figure 2, which shows the main architecture
used in H2020 De-RISC [15] and H2020 SELENE [8].

Fig. 2. Example of safety-relevant microprocessor with SafeX hardware
modules integrated.

As shown, the microprocessor includes some cores
connected through a bus. Such bus implements the
Advanced Microcontroller Bus Architecture (AMBA) and,
in particular, the AMBA Advanced High-performance Bus
(AHB) architecture. A shared second level (L2) cache is
connected to the AMBA AHB bus on one hand, and to
an AMBA Advanced eXtensible Interface 4 (AXI4) on the
other, where the latter is used to reach DRAM memory
and peripherals. Note that, while SafeX components have
been integrated in such a microprocessor, they are not
strictly limited to such a microprocessor or to its specific
communication protocols, although porting SafeX components
to a different SoC or communication protocol requires
tailoring their interfaces.

The details on how each SafeX component interacts with the
different SoC components are provided in next section along
with the description of the SafeX components.

III. SAFEX COMPONENTS

This section introduces the SafeX components developed so
far providing support to implement safety measures (SafeSU,
SafeDM, SafeDE and SafeSoftDR), to provide observability
channels (SafeSU), and to provide controllability means
(SafeSU and SafeTI).

A. SafeSU Hardware Statistics Unit

The SafeSU is a multi-purpose multicore statistics unit
providing means to implement safety measures, as well as
observability and controllability channels [3]. In particular, the
SafeSU incorporates three main features:

• Cycle Contention Stack (CCS). The CCS [9] is a
mechanism which, based on the arbitration signals
observed in the bus, determines what bus master (e.g.,
typically a core) is using the bus – if any, and what
master is being delayed by another bus master that may
be using the bus. Hence, it allows breaking down the time
a task is willing to use the bus into actual utilization and
interference created by each other core.

• Maximum-Contention Control Unit (MCCU). The
MCCU [5] provides support to set interference quotas
across cores so that, upon a quota exhaustion, an interrupt
is raised allowing the operating system or the hypervisor
to take the corresponding corrective action.

• Request Duration Counters (RDCs). The RDCs [5]
provide capabilities to measure the largest request
duration observed per request type so that such
information can be used, for instance, for Worst-Case
Execution Time (WCET) estimation. The RDCs also
provide capabilities to pre-program them with a threshold
value, and raise an interrupt if the actual request
duration observed exceeds the pre-programmed value,
hence indicating that an overly long event has been
observed.

Apart from all those features, already available in the
open source prototype, we are currently in the process of
extending the CCS to monitor interference in interfaces where
the master ids do not correspond to the cores, as illustrated
in Figure 2. For instance, if two cores create interference on
each other in the access to DRAM beyond the L2 cache,
their master ids are not explicitly visible in the L2-to-DRAM
interface since the master id identifies the L2 cache, not the
core generating the request. As part of H2020 De-RISC and
H2020 SELENE, we are developing two alternative solutions
to quantify interference and break it down across cores based
on other signals (e.g., L2 cache misses) or on modules
propagating core ids.

Note that the SafeSU has been extended recently with
reliability features as part of a Failure Mode and Effect
Analysis (FMEA) [4] to better adhere to the requirements of
safety-relevant systems.

B. SafeTI Hardware Traffic Injector

The SafeTI is a flexible and programmable traffic
injector [13]. It works attached to a communication interface,
as shown in Figure 2, where we show that there may be
multiple SafeTI modules integrated in the SoC, either in
different interconnects (like in the figure) or in the same
interconnect. The publicly available version supports AMBA
AHB, but a version also supporting AMBA AXI4 is currently
under development.

The SafeTI is programmed with specific commands that
allow performing an action repeatedly or a sequence of
specific actions. Such pattern with one or multiple actions
can be, in turn, performed once, a given number of times, or
repeated indefinitely. Actions include read and write operations
with pre-defined targets, and with varying amounts of data
transmitted, hence modelling transmission bursts. Actions also
include delays of pre-defined duration so that read and write
transactions occur at specific rates.

The SafeTI can be used for multiple purposes, being the
main one generating specific stress patterns to assess the
impact of timing interference on tasks running in the cores.
Such patterns can be devised to mimic synchronously –
and hence in a controlled manner – the traffic patterns that
asynchronous components such as accelerators, DMAs, and
peripherals could generate. This way, the impact of those
traffic patterns can be tested in a controlled manner.

C. SafeDM Hardware Diversity Monitor

The SafeDM is a hardware monitor that, by comparing the
state of the pipeline of two cores, determines whether they
have enough diversity so that a fault that could affect both

of them (e.g., a voltage droop), cannot lead both cores to
experiencing the same error [2]. Faults leading to identical
errors in redundant cores are referred to as Common Cause
Failures (CCFs) in automotive jargon. The typical solution to
mitigate CCFs is using DCLS. However, due to the complexity
of today’s SoCs, if a task is run redundantly in two cores, it is
extremely unlikely to have the same state in both cores since
tasks will not easily get synchronized (e.g., due to serialization
accessing DRAM). However, while diversity is expected to
exist, means are needed to provide such evidence to build the
safety concept, and SafeDM provides such evidence.

SafeDM builds on gathering information from the pipeline
registers of the cores as a proxy of their current electrical
state and comparing those values across cores. If they differ,
then current is flowing heterogeneously across cores and any
disturbance affecting both of them will produce different
electrical, and hence also logical, effects. Therefore, by
comparing the outcomes of the tasks running in those cores,
even if both have erroneous state, the error will be detected
because errors will differ.

Note that SafeDM may raise false positives, hence
indicating lack of diversity when it exists due to non-monitored
activities. However, our evaluations show that false positives
are extremely unlikely. In fact, we have observed false
positives for very small loops with almost identical behavior
across iterations so that, even if staggering exists, may lead to
identical sets of instructions and data being processed across
both cores.

In terms of operation, SafeDM is a non-intrusive module
since it does not interfere with the execution of the tasks
of the cores being monitored. SafeDM just snoops specific
information through dedicated signals and collects information
that can be read at will. So far, SafeDM has been integrated
with NOEL-V cores [6], but nothing precludes its integration
with other cores.

D. SafeDE Hardware Diversity Enforcement Module

The SafeDE works as a light version of DCLS for non-
lockstep cores [1]. Tasks need to be run redundantly by
software means, and SafeDE is in charge of guaranteeing that
the trail core does not catch up with the head core. This way,
both cores execute different instructions at any point in time
and, upon a fault affecting both cores simultaneously, no CCF
can happen.

The SafeDE snoops the instruction counts of both cores
and checks whether the difference in number of instructions
executed by the head core and the trail core is above a pre-
defined threshold. If the difference is below the threshold
(typically as many instructions as a core may have in-
flight simultaneously), then the trail core is stalled using the
appropriate stall signal. If, instead, the difference is above the
threshold, then both cores are allowed to progress, resuming
the execution of the trail core if it was stalled.

The SafeDE has negligible performance impact since the
execution of the task in the trail core is typically delayed by
few tens of cycles with respect to that of the task in the head
core. Hence, SafeDE provides a very light way to achieve
DCLS. Note, however, that the effectiveness of the SafeDE
module depends on whether the instruction stream executed

Fig. 3. Experiment example with a benchmark experiencing interference from
the SafeTI, and using the SafeSU to measure such interference.

redundantly in both cores is truly identical. Upon a divergence,
then the guarantees in terms of execution staggering are lost.

As in the case of SafeDM, SafeDE has been integrated with
NOEL-V cores [6], but nothing precludes its integration with
other cores.

E. SafeSoftDR Software Diversity Enforcement Library

The SafeSoftDR is the software-only counterpart of
SafeDE [10]. In particular, the SafeSoftDR implements a
software monitor polling both the head and trail cores, to
obtain how many instructions have executed each of them, and
compares the difference against a pre-defined threshold. Since
the monitoring loop takes much longer when performed at
software level, the staggering threshold also needs to be much
higher (e.g., 100,000 instructions), which makes staggering be
as much as 100µs.

The SafeSoftDR makes execution in the trail core stall and
resume building on typical process signals such as SIG STOP
and SIG CONT in Linux, but analogous signals can be used
for other operating systems.

Overall, SafeSoftDR has non-negligible impact in the
execution time of the task running in the trail core, which will
finish some hundreds of microseconds later than that running
in the head core. However, SafeSoftDR does not require any
hardware support and can be deployed virtually in any RISC-V
multicore.

IV. ILLUSTRATIVE EXAMPLE

For illustrative purposes, we show the joint use of SafeTI
and SafeSU in the context of the SELENE platform [8] in
Figure 3. In particular, we show the measured interference
observed when running a benchmark performing sustained
write memory accesses in one of the cores, whereas the SafeTI
injects different types of write traffic. Traffic injected consists
of requests with varying size (between 512 bytes and 1MB,
see z-axis), and with varying delay between requests (between
0 and 32K cycles, see x-axis). Interference experienced by
the benchmark measured with the SafeSU (in millions of
cycles, see y-axis) shows how increasing request sizes increase
interference, as well as increasing inter-request delays reduce

such interference. As shown, the SafeTI effectively and
flexibly injects interference, whereas the SafeSU is capable
of monitoring it. More complex examples (e.g., with multiple
SafeTI modules or adding traffic from other cores) could
be produced, and the SafeSU would allow to break such
interference down across contenders.

V. CONCLUSIONS AND FUTURE WORK

This work introduces the SafeX family of components
for safety-relevant RISC-V microprocessors. Components
developed so far include statistics units (SafeSU), traffic
injectors (SafeTI), and support for diverse redundancy
(SafeDM, SafeDE and SafeSoftDR). Some of those
components are already offered with permissive open
source licenses, and the rest of them will be distributed
analogously in the near future.

By incorporating SafeX components, some key features
needed by safety-relevant microprocessors can be achieved,
hence closing the gap towards fully open source safety-relevant
RISC-V microprocessors.

Part of our future work consists of porting SafeX
components to other SoCs, other cores, and other interfaces
(e.g., AMBA ACE), as well as developing additional
components complementing already developed ones, such as,
for instance, watchdogs and true DCLS layers.

ACKNOWLEDGEMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement no. 871467. This work has also been
partially supported by the Spanish Ministry of Science and
Innovation under grant PID2019-107255GB-C21 funded by
MCIN/AEI/10.13039/501100011033.

REFERENCES

[1] F. Bas et al. SafeDE: a flexible diversity enforcement hardware module
for light-lockstepping. In IOLTS, 2021.

[2] F. Bas et al. SafeDM: a hardware diversity monitor for redundant
execution on non-lockstepped cores. In DATE, 2022.

[3] G. Cabo et al. SafeSU: an extended statistics unit for multicore timing
interference. In ETS, 2021.

[4] G. Cabo et al. SafeSU-2: Safe statistics unit for space MPSoCs. In
DATE, 2022.

[5] J. Cardona et al. Maximum-Contention Control Unit (MCCU): Resource
access count and contention time enforcement. In DATE, 2019.

[6] Cobham Gaisler. NOEL-V Processor.
https://www.gaisler.com/index.php/products/processors/noel-v.

[7] De-RISC Consortium. De-RISC website, 2021. https://www.
derisc-project.eu/ (accessed Feb-2021).

[8] C. Hernàndez et al. Selene: Self-monitored dependable platform for
high-performance safety-critical systems. In DSD, 2020.

[9] J. Jalle et al. Contention-aware performance monitoring counter support
for real-time MPSoCs. In SIES, 2016.

[10] F. Mazzocchetti et al. SafeSoftDR: a library to enable software-based
diverse redundancy for safety-critical tasks. In FORECAST Workshop
(with HiPEAC conference), 2022.

[11] NSI-TEXE. NS31A : RISC-V 32bit CPU which supports ISO26262
ASIL D. https://www.nsitexe.com/en/ip-solutions/ns-series/ns31a/.

[12] RISC-V International. RISC-V International website. https://riscv.org/.
[13] O. Sala et al. SafeTI: a hardware traffic injector for mpsoc functional

and timing validation. In IOLTS, 2021.
[14] SELENE Consortium. SELENE website, 2021. https://www.

selene-project.eu/ (accessed Feb-2021).
[15] N.-J. Wessman et al. De-risc: the first risc-v space-grade platform for

safety-critical systems. In SCC, 2021.

