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Abstract—Smart contracts enable autonomous decentralized or-
ganizations (DAOs) in large, trustless and open trading networks by
specifying conditions for automated transactions of cryptographi-
cally secured data. This data could represent cryptocurrencies but
also sensor data or commands to Cyber-Physical Systems (CPS)
connected to the Internet. To provide reliability, the contract code
is enforced by consensus and the transactions it triggers are non-
revertible, even if they were not intended by the programmer,
which could lead to dangerous system behavior.

In this paper, we conduct a survey over existing smart contract
platforms and languages to determine requirements for the design
of a safer contract language. Subsequently we propose concepts
that enhance the understanding of code by limiting confusing lan-
guage constructs, such as nesting, arbitrary naming of operations,
and unreadable hash identifiers. This enables human reasoning
about the contract semantics on a much higher abstraction layer,
because a common understanding can be derived from the language
specification itself.

We implement these concepts in a new domain specific language
called SmaCoNat to illustrate the feasibility and show that our
concepts are barely covered by existing languages but significantly
enhance readability and safety without violating deterministic
parsability.

Index Terms—Smart Contract, DSL, Blockchain, IoT, CPS

I. Problem Statement
Smart contracts are scripts on a Blockchain that allow to

securely automate multi-step trading of digital tokens in a
decentralized network [1]. Beyond cryptocurrencies, these to-
kens can represent any piece of information in a complex
decentralized process, such as items in a supply chain that are
transfered between multiple parties, or a license key for an
embedded firmware update that unlocks new capabilities.

Once a smart contract is deployed on the blockchain, its
code cannot be altered and its behavior will be enforced by
all participants in the network. While this enforcement offers
security in the sense that parties can rely on the terms and
conditions specified in the contract code, it also inherits a great
risk, since any unintended execution path cannot be undone.

In 2016, an unknown attacker exploited an unintended be-
havior in one of the biggest smart contracts on the Ethereum
platform called “The DAO” [2]. This contract was meant to
securely automate the fund raising of a Startup but the attacker
obtained $50 million worth of Ether currency. The smart con-
tract was vulnerable to recursive calls using an overwritten de-
fault function, which allowed the attacker to withdraw money
several times from The DAO account before it could update
its balance correctly [3]. Some people argue that the exploit
was part of the specification of the contract and thus legal.
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Figure 1: Our vision: A natural language specification that can be
compiled to smart contract source code and is legally enforceable
in court. To achieve this goal we need an unambiguous mapping
between natural language and smart contract instructions.

However, since the attack involved 15% of all available Ether,
the core developers decided to hard-fork the Blockchain, which
means to create a completely new Blockchain that restarts
from a block before the hack.
This example illustrates that the correctness of smart con-

tracts according to their intended behavior is crucial for all
involved parties. A common approach is to formally verify
the program code against a specification that is considered
to cover the intention. However, verification only shifts the
problem to the specification because then the specification
needs to be correct and complete by human reasoning. Thus,
the behavior is eventually determined by some sort of code
and we need to investigate how intention can be expressed
clearly in code, such that also non-software developers can
reason about it. Human intention is mostly specified in natural
language, which is easy to understand for most humans but
often highly ambiguous and subject to interpretation.
Although the small set of data types and operations of

most programming languages is less ambiguous, programming
code introduces an arbitrary mapping to natural language by
allowing the developer to freely choose names for functions
and data. We simply cannot trust a custom defined function
sum(a,b) to correctly add a and b until we break it down to
operations that are predefined by the language itself where we
have a common understanding of their behavior.
Some domains, such as law,managed to create specifications

that express conditions and intentions in a type of natural
language that is less prone to misinterpretation and provides a
common understanding that is continuously reinforced by the
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decisions made in court.
In this paper, we want to investigate how natural language

concepts can be used to create a smart contract specification
language that is human readable, compilable to executable
code, and legally enforceable, as it is illustrated in Figure 1.

A. Scope and Contributions
This paper addresses the challenges of smart contracts that

arise from an ambiguous mapping between a contract’s inten-
tion (natural language) and the program instructions that are
finally executed. We then propose a methodology to create
a high-level specification for program code that achieves a
common understanding via natural language sentences and
can be directly compiled to machine instructions. In particular,
we

• conduct a short survey on smart contracts fromwhich we
identify language requirements (Section II),

• propose several concepts to create a mapping from natu-
ral language to program semantics (Section III),

• create SmaCoNat, a new domain specific language (DSL)
that is tailored for a subset of the transaction logic we
found in smart contracts (Section IV), and

• evaluate and compare SmaCoNat to existing languages.

II. State of the Art
In this section, we present the working principles of smart

contracts, their current implementations and theoretical mod-
els, and derive a set of requirements.

A. Smart Contracts
The term smart contract was coined by Nick Szabo as “a set

of promises, specified in digital form” [4] and a transaction pro-
tocol that enforces these promises. In general, smart contracts
provide a marketplace of services concerning the “exchange
and tracking of a digital asset” [1]. These digital marketplaces
are proposed to be used for automation in many scenarios
such as supply-chain tracking, energy trading in smart grids,
property renting, or embedded firmware updates [1] andmight
be important for future decentralized CPS architectures.

In its modern implementation, which is shown in Figure 2,
a smart contract is a program code that is stored and executed
by a network of participating nodes. The nodes keep track of
the ownership of all of all existing assets. The assets belong to
accounts which in turn belong to the trading parties. A party
could be either a human or a smart contract itself.

In its basic form, a smart contract specifies conditions on
incoming transactions whichwill automatically trigger further
transactions if those conditions are met. The accounts, which
own the assets, are independent from the network nodes, since
a network node is just the computer that runs the platform and
not necessarily an entity that owns assets. However, in most
scenarios nodes get paid for the computation in digital assets
and thus need to hold an account as well.

The network nodes are responsible for validating and apply-
ing transactions as well as executing the instructions of a smart
contract, which in turn could generate new transactions.

In most cases, the consensus about the ownership of assets
is reached by using a Blockchain that keeps track of all transac-
tions of assets that are ever made since the start of the network.

Blockchain

Node

Parties

Network

Smart 
Contract

Transactions

Account

Block Header

data-hash

prev-hash

Transactions

Contract Code

A:
B:
C:

Ledger VM

Figure 2: Architecture of a smart contract platform. Contract code
and transactions between accounts are stored in a blockchain which
is replicated and processed by network nodes.

1) Blockchain is a distributed data structure that stores data
in an ordered chain of blocks and is shared and replicated by
all nodes [1]. In cryptocurrencies, it functions as a ledger that
stores transactions of assets and is therefore referred to as a
Distributed Ledger Technology (DLT).
The blocks are divided into block-data and a corresponding

block-header that stores the hash of the data. Each block also
confirms and reinforces the data of its preceding block by
including the hash of the previous block-header in its own
header (see Figure 2). For this reason, any change to the
Blockchain would result in changing hashes up to the latest
block, which makes it impossible to change any accepted
transaction in the system that was included in the Blockchain.
The current state of the system can be determined by apply-

ing all transactions on the initial state which is specified in the
first block, called Genesis Block.
2) Transactions are broadcasted events that transfer the

ownership of an asset. Transactions can be created manually
by humans or automatically by smart contracts. In principle,
a transaction is valid if it is cryptographically signed with
the key-pair that belongs to the owner of the transfered asset.
Nodes in the network will validate transactions and – if valid
– include them in the blockchain, to confirm their validity. To
keep track of the ownership of the transfered asset in a DLT,
such as Blockchain, there are two common models:
First, the account-based model, where each node simply

stores the balance of all assets that each account owns. Trans-
actions simply reduce the amount of an asset on the sending
account and increases the amount on the receiving account.
Second, the Unspent Transaction Outputs (UTXO) model,



where assets are stored on addresses that belong to crypto-
graphic keys instead of accounts. Instead of adjusting balances
for each address, a transaction fully “consumes” assets from a
list of input addresses and reproduces them on a list of (new)
output addresses.

The validity and the order in which transactions are added
to the blockchain and applied is determined by an underlying
consensus mechanism.

3) Consensus: The nodes in the network are responsible for
keeping track of all transactions and executing the code of
smart contracts. In order to keep a single, consistent state of
the system, all nodes in the network need to reach consensus
(agreement) on the validity and order of broadcasted transac-
tions by voting on them.

While there are many different consensus protocols [5], cur-
rently the most common types for a Blockchain are Proof-of-
Work (PoW) and Proof-of-Stake (PoS). The advantage of these
two over traditional mechanisms, such as Practical Byzantine
Fault Tolerance (PBFT), is that they enable a trustless, open
network where everyone can join without the need to keep a
list of permissioned nodes allowed to vote for a certain system
state.

In PoW, the voting weight of any node is correlated to
its processing power which is physically embodied and not
duplicable for free like virtual identities. In order to vote, the
nodes are required to solve a cryptographic puzzle by brute-
forcing and they get paid for the effort when their vote is
considered valid by consensus.

In PoS, the voting weight is correlated to the stake of a node
within a crypto-currency system to avoid the energy waste
of PoW. Nodes need to bind a certain amount of money to
their vote and if it is considered correct they get paid back a
higher amount. Otherwise, the money is lost. The consensus
is achieved if at least 2

3 of all voting power belongs to honest
nodes.

B. Implementations

In order to identify implementation constraints, we will
evaluate several platforms that support smart contracts. Our
findings are summarized in Table I.

1) Bitcoin [6] started 2009 as the first pure digital cryptocur-
rency and established the Blockchain as tamper-proof DLT on
which most other implementations are built upon. The Bitcoin
Blockchain uses the UTXOmodel to keep track of the balances
for each address. Bitcoin transactions also embed Script, a
simple stack-based byte-code-language that specifies which
conditions must be met (e.g. providing the correct signature)
in order to spend the Bitcoins that were transfered by the cor-
responding transaction. The Script is a list of instructions that
are linearly executed without backward jumps which leads to
Turing-incomplete programs that will always terminate [7].

2) Ethereum is an account-based DLT with focus on decen-
tralized general purpose computing. Accounts can optionally
store contract code, which will be executed each time a trig-
gering transaction is made to the corresponding account. This
way, contract-controlled accounts can autonomously interact
with each other, modeling complex multi-step processes. This
feature, however, inherits the risk of creating an infinite loop
between two accounts [8]. To solve this issue, contracts can

only execute a certain amount of operations which is deter-
mined by the paid transaction fees of the triggering transac-
tion.
Contracts are written as stack-based byte-code for the

Ethereum Virtual Machine (EVM). The EVM is Turing-
complete and can access the storage of an account which
is an infinite byte array. For convenient contract creation,
Ethereum offers Solidity [9], an object-oriented programming
language based on JavaScript that can be compiled to EVM
code. Ethereum also defined the ERC-20 Token Standard [10]
which defines an unified API for tokens.

3) Neo Ecosystem is similar to Ethereum as it trades digital
assets between parties using a smart contract framework that
is executed on their own stack-based NeoVM [11]. However,
the NeoVM allows only certain operations and NEO provides
compilers from several well-known languages (e.g. C#, Java,
Python) to NeoVM instructions [11].
4) NXT is a DLT that offers several transaction templates

designed as basic communication mechanisms for the creation
and trading of tokens [12]. These templates can be seen as
fixed conditional contracts and the available features include,
for example, asset trading, decentralized DNS, public polls,
and encrypted messaging. A user can set up such a contract
template by setting parameters in a web-interface and finally
issue the contract as transaction to the NXT network. When
another user transfers a certain token (e.g. money as NXT
tokens) to the contract, it can automatically respond with
another transaction when certain conditions are met.
5) Corda is a UTXO-based DLT for financial trading. It uses

contract code that is linked to a legal prose to achieve automa-
tion and legal enforceability [13]. The smart contracts transfer
state-objects between communicating parties.The state-objects
can hold arbitrary business information and are processed by
the contract code of the receiving party.
They identified ownable states as the fundamental building

blocks for distributed ledgers from which they derive fungible
assets. Fungible assets can – unlike unique tokens – be com-
bined to represent a balance.
Contracts are executed as byte-code in a deterministic Java

Virtual Machine (JVM) that allows only white-listed language
constructs [14]. For example, contracts are limited to “pure”-
functions that can only consume or append data on the state-
object that was transacted to the contract function. Storing
persistent state variables outside the state-object as well as
using any random or time-based function is not possible.
The legal prose consists of a template text that is filled with

parseable constant parameters and the hash of the legal prose
is attached to the contract as reference in the case of a dispute.
6) Cardano is a UTXO-based, Proof-of-Stake DLT and uses

its own contract language Plutus, which is inspired by Haskell
[15]. Plutus therefore provides strongly typed, functional, gen-
eral purpose programming [16]. However, Plutus does also
allow arbitrary naming and thus does not provide any mecha-
nism to link code to trading ontology.
7) Tezos is a self-amending, account-based smart contract

platform that uses delegated PoS [17]. It focuses on formal
verification of contract code.



Platform Ledger,
Consensus

OP Codes /
Language Features

Bitcoin UTXO,
PoW

Script† /
Ivy

Linear execution
conditions, no loops

Ethereum Accounts,
PoW→PoS

EVM /
Solidity General purpose computing

Neo Accounts,
D-BFT

NeoVM /
C#, Java, ...

Many compilers for
high-level languages

NXT Accounts,
PoS

Templates† /
Website Forms

Just parameters,
no coding

Corda UTXO,
Raft

JVM /
Java, Kotlin

stateless functions,
links legal prose

Cardano UTXO,
PoS

IELE /
Plutus functional programming

Tezos Accounts,
PoS

Michelson /
Liquidity formal verification

Table I: Different platforms that implement smart contracts.
†: language limited and not Turing-complete.

C. Theoretical Smart Contract Models
Despite specifying smart contracts with a programming

language, we also found alternative approaches in literature,
which we summarize shortly in the following. These ap-
proaches are mostly of theoretical nature and try to formalize
concepts and requirements for smart contracts.

1) The Ricardian Contract is a model for digital traded assets
in which assets are described as “contracts” between an issuer
and a holder [18]. This method allows each participant in a
trading system to issue own (competing) assets with its own
set of trading rules, representing any type of value. These
contracts consist of legal text, parameters, and a signature chain
which all is digitally signed by the issuer.

By including the signing-key of the issuer in the contract
itself, it contains its own PKI and only this top-level signing-
key needs to be authenticated to belong to the real issuer in
the beginning.

Any transaction in this system includes the hash of the
contract that issued the transfered asset to secure the claims
and prevent changes in the contract claims. The same contract
should be readable by people and parsable by programs.

This contract concept is used by some systems, such as
CommonAccord [19].

2) Smart Contract Templates which are described in [20],
[21], extend the concepts of the Ricardian contracts and link
legal agreements to executable code to achieve enforceability
– either by law or by tamper-proof software execution.

Their contracts consist of two separate parts, the legal con-
tract prose and the executable contract code. The legal prose
is written in natural language which also includes parsable
parameters. These parameters are used as configuration for a
standardized, fixed executable code, whose behavior is only
controlled by the provided parameters.

The parameters are key-value pairs that have an identity
(key), a type, and a value. Parameters might be defined, as-
signed and referenced in different locations of the legal prose
and could hold complex data structures. Using powerful pa-
rameters is necessary to use standardized code, which could
be thoroughly tested and certified, in contrast to custom code
that could lead to unintended behavior. [20]

The authors further sketch the idea that parameter values
could also be expressions based on other parameter values or
that a structured language could allow to directly write the

expression into the legal prose [20].They also expect that long-
term research will lead to a language that can be compiled to
executable code and is legally binding at the same time.
To enable this vision, the template system needs to satisfy

several requirements, such as a common ontology that allows
reasoning about the semantics of the contract, as well as a
structured separation of large agreements into logical parts,
such as definitions, obligations and schedules [21].
Overall, the presented template system uses a separation

of code and prose. Increasing the parameter complexity for
standardized code decreases the verification effort for instruc-
tions but increases the complexity for verifying that the ranges
and combinations of parameter values are valid. At the end, a
human still needs to understand what might happen, before
the code is executed.
3) Ontology for Smart Contracts: The work in [22] suggests

an ontology for smart contracts that uses Agent, Commitment,
Transaction, and Resource. Smart contracts are defined as Com-
mitments between Agents, which automatically execute Trans-
actions of a certain Resource.

D. Discussion

We presented an overview on smart contracts, their current
implementations, and ongoing research in alternative specifi-
cation methods.
We found that most existing implementations either exe-

cute low-level byte code in a Turing-complete virtual machine
(VM), or restrict contract capabilities to fixed templates that
offer simple conditional execution of transactions. Since byte-
code languages are difficult to write and read, some offer
compilers from high-level programming languages.
The high diversity of the languages used to program smart

contracts illustrates the problem that there is no suitable
known language yet and the platforms often attempt to create
such a language by their own.
Most implementations also identified the need to limit lan-

guage constructs to achieve a deterministically terminating
program which achieves some safety on the execution level.
However, on the semantic level, there is almost no effort to
provide safety by providing a common understanding for all
involved parties. All considered programming languages offer
infinite aliasing of operations and data structures.
All smart contract models use the business concept of a

specific predefined currency and only allow additional tokens
to be issued and traded. However, currencies and tokens could
both be derived from the model of a generic asset that is traded
between parties.
What is alsomissing is the concept of permissions. Accounts

need to authenticate via a signature to transfer their assets but
beyond that there are no restrictions for transactions of assets.
However, we think that permissions could also be considered
for the trading and issuing of assets.
The alternative approaches from literature separate the exe-

cuted code from the legal prose and link these two together via
parameters. This enables a natural description of the intention
in the legal prose while the code could be more standardized.
However, there is no way to determine whether the legal prose
actually matches the contract code or how any dispute can be
resolved in case the code does not completely behave the way
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it is stated in the prose. Overall, we think that a separation
of code and prose is just a temporary solution that introduces
new types of problems.

E. Requirements
Weuse the results fromour survey and discussion to identify

requirements that are elementary for smart contract appli-
cations and constrain the design space for a smart contract
language.

As we have seen from existing implementations, the exe-
cution of transactions including validation of signatures will
be handled by the underlying DLT, such as Blockchain and
PoW, and thus does not necessarily need to be expressed by
the contract language. On the other hand, application specific
semantics about currencies, sensor values and commands in
the domain of IoT are probably too broad to be covered in a
single language. Within the IoT, we therefore focus only on
the trading aspect of CPSs that exchange data by treating this
data as an asset that can be owned and transfered without
considering its actual meaning. We see trading as the first and
fundamental layer of behavior that a smart contract specifies
and enforces. However, further layers could subsequently ex-
tend a contract’s expressiveness to the application domain in
the future.

a) Trading Ontology: Smart contracts are about trading
digital assets with different properties and therefore the con-
tract language should provide keywords and operations in
natural language terms that are already used and understood
in the real world domain of trading to ease human reasoning
about the semantic.

b) Ownership Management: The type system of the lan-
guage needs to be able to model owning parties and owned
assets. All existing assets need to be globally identified and
assigned to a specific owner. If assets can also be created by
parties, the type system should also represent which assets
were created by which party.

c) Trading Logic: Smart contracts need to express the
logic for trading assets. In its basic form, it needs to specify
conditions on a received transaction which will trigger other
transactions. This logic could be formalized in general as

When A transfers x with properties Px to B,
then B transfers y with properties Py to C

where A,B,C are accounts and x, y are assets. A and C
could also refer to the same account, to express a kind of
exchange contract. To express conditions on properties, the
language also needs to express mathematical relations for the
comparison of properties.

III. Our Approach
In this section, we illustrate concepts that can help to design

a natural language-oriented specification for smart contracts
that allow human reasoning on a high abstraction layer.

Our overall vision is a language that is human readable, safe
to use, legally binding, and executable. While this goal seems
very ambitious, we want to evaluate concepts that can help to
approach it. We focus on two main problems that we think are
crucial: readability and safety.

First, current programming languages are hard to read for
humans because they are designed to be parsed by compilers

Key-Value Natural Sentence Hybrid
entity: {

"type": "Account"
"name": "Bob"
"issuer ": "Alice"
"year": "2018"
"fund": "42 BTC"

}

Account "Bob"
issued
by "Alice"
on "2018"
owns "42 BTC".

Account "Bob"
issued by "Alice"
with
{
year: "2018" ,
fund: "42 BTC"

}.

Table II: Different approaches for specifying properties. A list of
key-value pairs could also be specified in a natural sentence using
prepositions.

and therefore enforce a syntax that contradictsmany aspects of
natural language. While natural language is context-sensitive
and ambiguous, it provides a common understanding by all
humans and is much easier to read.
We therefore propose that we should shift programming

language syntax towards natural language sentences as long as
they can be compiled deterministically to executable machine
instructions. For example, giving names to variables instead of
directly using memory addresses was a huge step to improve
human readability and it did not restrict the ability to compile
such a language to machine instructions.
Second, current programming languages are unsafe in the

sense that it is easy to write code that expresses a behavior
that is not intended. One reason is that only a few operations
are defined by the language itself and that a programmer is
allowed to create new functions with arbitrary names. We
therefore propose that we can improve language safety by
reducing the possibility to repetitively alias logic and data
structures by custom names.
In the following, we explain our specific concepts in more

detail.

A. Limit Custom Naming
One source of ambiguity is the possibility to choose own

function names. While the sectioning of code into custom
functions is fundamental to most programming languages in
order to handle complexity, it also allows to alias operations
with arbitrary names. Humans and parsers are required to
resolve each function name until there are only predefined
operations such as mathematical arithmetic.
We should limit aliasing, such that a human only needs to

resolve a few names before reaching predefined operations
that are built upon common understanding. Finding a suitable
balance between the amount of predefined operations and the
amount of allowed aliasing would be a task for future studies.

B. Limit Nesting
Another concept that is heavily used in programming lan-

guages but not in natural language sentences is nesting of
statements. For example, if-statements are often nested in
a programming language but in natural language we would
rather define a list of conditions concatenated using “and” or
“or”.

We should limit nesting of logical structures and should
aim for a more sequential specification as it occurs in natural
sentences.

C. Sectioning the Code Structure
Most documents group the text into sections. For example,

within the first pages, special terms and acronyms are defined



and later used in the text. In most programming languages,
there is no structure enforced, hence allowing the programmer
to declare and define data types any time.

Consequently, we propose a strict separation of data dec-
laration and operational statements. The entire contract code
should be sectioned allowing only certain language constructs
in each section.
D. Predefined Type System

Most programming languages use a type system that pro-
vides only some base types of data, such as Integers, Floats, and
Strings and then allow the programmer to define new types
derived from them.

Weakly typed languages, such as Python, are most am-
biguous because variables can change the type of data they
represent by implicit type conversions. Conventional typed
languages, such as C, assign each variable an explicit type but
variables of the same type may be mixed even they represent
different quantities. Strongly typed languages such as Ada,
allow to derive distinct types from the same base type, which
are incompatible to each other and may only be mixed by
explicit type conversion.

For natural language, we can observe that many types are
already implicitly defined. For example, a “Temperature” is
completely incompatible to “Velocity”, even though both could
be represented by real numbers. However, synonyms, such as
“Velocity” and “Speed”, lead to confusion about compatibility
and should be avoided.

For smart contracts, we therefore suggest that each data type
or data-structure should be predefined.This is possible because
we only focus on the trading logic between CPSs and do not
try to cover all possible application scenarios of data structures.
Programmers should be only allowed to assign values to these
predefined types, which could then be evaluated on a higher
application layer.This way, the value of an asset or token could
encode a complex data structure as string using, e.g., the JSON
format, but this string value would remain meaningless for the
semantics of the contract.
E. Natural Language Syntax

Programming languages define special keywords and sym-
bols that are often not or only partially related to a natural
language meaning. A statement in a programming language
would be easier to understand if it reads like a natural sentence.
To achieve this, all keywords and all identifiers in a smart
contract should be meaningful words. These keywords should
provide one context-insensitive meaning and should be easily
distinguishable from each other. Table II illustrates how prepo-
sitions could be used to specify properties of a data structure
in a natural sentence.

From analyzing the smart contract platforms and theoretical
frameworks, we identified the following list of terms that could
provide a trading ontology by answering the questions about
Who,What and How:

• Who: Entity, Party, Account, Agent, User, Actor
• What: Data, Object, State, Message, Asset, Item, Token,
Quantity, Currency, Value

• How: Transaction, Event, Action, Transition
Another step towards a natural language syntax is a reduced

use of symbols. For example, in C, the symbol & is used as a

Contract
+preamble: string
+agreement: string
+event: string

+handle(Transaction)

Entity
+name: string
+issuer: Entity
+owner: Entity

�antity
+unit: string

Token
+id: string

Account
+issued: list(Entity)
+owning: list(Entity)

+issue(Entity)
+transfer(Entity)
+destroy(Entity)

Asset
+value: Numeric

List *1

Figure 3: UML diagram of our proposed data structures.

boolean operation, for accessing a memory address and for
declaring a reference. These different use cases make it hard to
understand C code, especially for beginners, since there is al-
most no correlation to the natural meaning of the & symbol.We
should also limit the need for parentheses or other delimiters
to group several statements or expressions, because nesting
of delimiters is a typical source of confusion. For example,
instead of using { and } to mark the body of an if-statement,
we should use then and end if, as it is already done by some
languages.

F. Human-readable Global Identifiers

Since smart contracts allow everyone to globally register
accounts and globally trade assets, we need global identifiers.
When it comes to globally identifying data, e.g. specific transac-
tions, cryptographic hashes are the common choice for smart
contract platforms because they provide enough entropy to be
unique. However, hashes are not human readable and could be
easily confused.We should aim for natural language identifiers
instead. A successful implementation of this idea are domain
names, which are more readable than IP addresses.
We therefore suggest to use a scope system similar to URLs,

but based on the issuer of an account. An account would then
be identified by its name and the name of its issuer, which
could result in an identifier such as licensekey.alice.company
to identify a license key issued by the account “Alice” which in
turn was issued by a globally known “Company”. This would
allow any account to issue its own version of an asset called
licensekey that could be traded.

IV. SmaCoNat: Our Natural DSL
In this section, we use the previously described methods to

propose a new domain specific language, we call SmaCoNat
(Smart Contracts Natural), suitable to express smart contract
behavior in a natural language syntax. We do not aim for a
full-featured language but rather illustrate how to implement
our concepts for a small set of types and operations. We
implemented SmaCoNat with Xtext [23], a framework for de-
veloping DSLs that is part of the Eclipse Modeling Framework.
All code examples in the remainder of this section, on how we
implemented the language are given in simplified EBNF syntax
instead of full Xtext syntax.



A. Type System and Trading Ontology
As discussed before, all data types will be predefined. We

model a smart contract by using the standard primitive types,
such as Integer and Strings, and a tree-structured hierarchy of
a few composite types, which are shown in Figure 3.

Since smart contracts automate trading, we use a minimal
ontology for our data model that captures the very nature of
trading: Ownership. Therefore, the common abstract class is
an Entity, which represents everything that can be created and
possessed.

From an Entity, we derive the concrete types Accounts and
Assets. Accounts are the actors/agents in the system that trans-
ferAssets.Assets are any information that can be traded such as
currencies, tokens, or sensor data. Assets are issued or revoked
by an Account, and can be transfered from one Account to
another.
B. Enforced Structure

In contrast to languages such as C, where a valid program is
simply an unstructured list of statements, we enforce a certain
structure on the first level of the code. Thus, we first define
the whole contract code as an ordered sequence of five distinct
rules:
Contract = Heading, AccountSection, AssetSection,

AgreementSection, EventSection;

The Heading states the contract language and the version
of the language. After the heading, all involved accounts and
assets must be declared. The agreement section specifies the
behavior that will be executed once the contract is signed by
all involved accounts. The events specify the behavior of the
signed contract when an asset is transfered to the contract.
Agreements and events are only allowed to refer to previously
declared accounts and assets.
C. Global Identifiers

Identifiers for entities must explicitly name the type fol-
lowed by the Account names of the chain of all involved
issuers until a known Account alias is reached. For example,
an account identifier is defined as
AccountId = 'Account', NAME, ('by' NAME)*, 'by', AccountAlias;

where AccountAlias refers to a list of globally known special
accounts or a previously defined account alias and NAME is a
terminal rule that matches strings enclosed in single quotation
marks. We defined the three special account aliases Self,
Genesis, Anyone and one special asset alias Input.

Selfmatches the Account belonging to the contract. Genesis
is the Account that issued and owns all entities in the initial
state of the distributed ledger and has no issuer/owner itself.
Anyonematches any Account and has no issuer.The asset Input
refers to the asset that was sent to the contract.

a) Single Aliasing To avoid repetition of long and unread-
able global identifiers, it is allowed to alias accounts and assets
during their declaration. For example, the AccountSection rule
is defined as
AccountSection =

'§ Involved Accounts:',
(AccountId, ('alias', NAME)?, '.')*

;

D. Logic
1) Operations: A contract may perform basic arithmetic

operations on the primitive types. For asset types we define
only three fundamental operations:
ASSETOP = 'issue' | 'transfer' | 'revoke';

2) Conditions: The contract may also contain non-nested
conditional statements on boolean expressions. Boolean ex-
pressions consist of the equality relation (equal to) for all
types and the additional relations smaller than and larger
than for numeric primitive types. All relations may be negated
by perpending the keyword not.

V. Evaluation
In general, it is difficult to evaluate a programming language

for its safety and expressiveness. In this section we give an
example for a valid SmaCoNat contract showing its feasibility
to express a typical contract behavior and finally compare
other languages regarding our language concepts. The results
are summarized in Table III.
A. SmaCoNat Sensor Example
The following contract example, written in SmaCoNat, spec-

ifies the behavior of a CPS that manages 42 parking lots by
selling parking tickets and controlling the parking barrier. In
this scenario involved are the controller and two barriers from
a globally known company AComp as well as any vehicle
approaching the barriers. One ticket costs 0.3 units of the
globally known currency TheCoin which was issued by the
Genesis block.

1 Contract in SmaCoNat version 0.1.
2

3 § Involved Accounts:
4 Account 'BarrierIn' by 'AComp' by Genesis alias 'BarrierIn'.
5 Account 'BarrierOut' by 'AComp' by Genesis alias 'BarrierOut'.
6

7 § Involved Assets:
8 Asset 'TheCoin' by Genesis alias 'TheCoin'.
9 Asset 'ParkTicket' by Self alias 'Ticket'.
10 Asset 'OpenBarrier' by Self alias 'Open'.
11

12 § Agreement:
13 Self issues 'Ticket' with value 42.
14 Self issues 'Open' with value 1.
15

16 § Input Event:
17 if Input is equal to 'TheCoin' from Anyone
18 and if value of Input is equal to 0.3
19 then
20 Self transfers 'Ticket' with value 1 to owner of Input.
21 Self transfers 'Open' with value 1 to 'BarrierIn'.
22 Self issues 'Open' with value 1.
23 endif
24

25 if Input is equal to 'Ticket' from Anyone then
26 Self transfers 'Open' with value 1 to 'BarrierOut'.
27 Self issues 'Open' with value 1.
28 endif

While this example is very simplified, it illustrates how
a system functionality can be mapped to a smart contract.
Furthermore, we do not need to perform a lot of checks, such
as checking the remaining tickets or validity of tickets because
this will be handled on the lower transaction layer by the
network.



SmaCoNat Solidity Plutus Liquidity Rholang
Structure section function function section function
Typing predefined strong strong strong behavioral
Aliasing single infinite infinite infinite infinite

Ontology trading general/
trading general general/

trading general

Global IDs names hash hash hash hash
Special
Symbols few some some many many

Table III: Evaluation and comparison of our DSL against other con-
tract languages.

B. Comparison
1) Enforced Structure: Enforcing a sectioned code structure

is a step towards code safety. In contrast, most languages such
as Solidity just group statements to functions but allow any
structure within a group. Its grammar [24] on the top level is
defined as
SourceUnit = (PragmaDirective | ImportDirective |

ContractDefinition)*

and within the body of ContractDefinition any order of state-
ments is allowed. Only Liquidity enforces a code structure
on the top level such that type declarations are only allowed
before the entry point. In contrast, SmaCoNat strictly enforces
a structure that separates different language aspects, making
it easier to analyze the code.
2) Type System: Almost all languages use a static and strong

type system and allow the programmer to create own types.
This does not only introduce aliasing of data instances but
also aliasing of data structures. Rholang uses behavioral types,
which are worse in the sense that a programmer is allowed to
specify custom behavior for the types making types another
source of custom named behavior. SmaCoNat only uses prede-
fined types which provide a common understanding.
3) Expressiveness: Some concepts that make SmaCoNat

safer and more readable also pose limitations to the expres-
siveness of the language. For example, we did not consider
loops, which could be enabled to some extend by allowing
iterations over lists of entities. While the other languages
are considered Turing-complete, most smart contracts do not
require loops and Turing-completeness [8]. Overall, we believe
that SmaCoNat can already express a wide range of behaviors
despite the restrictions we put on the language.
4) Trading Ontology and Identifiers: Solidity predefines

some operations on their address-type, such as balance and
transfer that are specific for trading.
Liquidity also defines trading-specific functions such as

Account.create() and Current.balance(). All other languages
only use a general-purpose computing ontology which makes
it impossible to reason about the semantic on a higher ab-
straction layer. For identifying transactions and accounts, it
seems that all considered languages use hash digests that can
be assigned to variables with custom names, which makes
them more readable but also introduces the aforementioned
issues. All considered languages use symbols instead of words
for all delimiters and partially for operations. While the gen-
eral usage in Solidity and Plutus can be considered moderate,
Liquidity and Rholang make heavy use of symbols to encode

semantics. Rholang even overloads symbols with different
meanings depending on the context. SmaCoNat allows sym-
bols only for arithmetic operations and punctuation of natural
language such as the period '.' to mark the end of a statement.

VI. Conclusion
Smart contracts are promising for secure automation in

IoT environments. However, for broad acceptance, we need
a readable and safe contract specification that can be directly
compiled to executable instructions. Existing implementations
lack a well-defined mapping to natural language, prohibiting
human reasoning on higher abstraction layers.
Therefore, we derived several language design concepts that

can be used to narrow the gap between conventional source
code and natural language descriptions to approach a unified
contract language.We implemented a DSL called SmaCoNat by
predefining a small set of operations and data types that allow
to directly express the trading logic with predefined operations
and prevents custom naming of identifiers. In contrast to ex-
isting smart contract languages, SmaCoNat enforces a clear
code structure, limits aliasing, and builds purely on natural
language identifiers, hence enabling a common understanding
of code semantics on higher abstraction layers.
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